

# 最新Security-Operations-Engineer | 一番優秀な Security-Operations-Engineer日本語練習問題試験 | 試 験の準備方法Google Cloud Certified - Professional Security Operations Engineer (PSOE) Exam関連資料



JapancertはGoogleのSecurity-Operations-Engineer認定試験について開発された問題集がとても歓迎されるのはここで知識を得るだけでなく多くの先輩の経験も得ます。試験に良いの準備と自信がとても必要だと思います。使用して私たちJapancertが提供した対応性練習問題が君にとってはなかなかよいサイトだと思います。

今の人材が多い社会中に多くの業界は人材不足でたとえばIT業界はかなり技術的な人材が不足で、GoogleのSecurity-Operations-Engineer認定試験はIT技術の認証試験の1つで、JapancertはGoogleのSecurity-Operations-Engineer認証試験に関する特別な技術を持ってサイトでございます。

>> [Security-Operations-Engineer日本語練習問題](#) <<

## 最新-ハイパスレートのSecurity-Operations-Engineer日本語練習問題試 験-試験の準備方法Security-Operations-Engineer関連資料

Security-Operations-Engineer試験トレントを購入した後、10分以内にできるだけ早く製品をお届けすることを保証します。したがって、長時間待つ必要がなく、配達時間や遅延を心配する必要はありません。Security-Operations-Engineer準備トレントをすぐにオンラインで転送します。このサービスは、Security-Operations-Engineerテストブレインダンプが人々の心をつかむことができる理由でもあります。さらに、Security-Operations-Engineerトレーニングガイドで20~30時間だけ学習すれば、Security-Operations-Engineer試験に自信を持って合格することができます。

### Google Cloud Certified - Professional Security Operations Engineer (PSOE) Exam 認定 Security-Operations-Engineer 試験問題 (Q32-Q37):

#### 質問 #32

Your organization uses Security Command Center Enterprise (SCCE). You are creating models to detect anomalous behavior. You want to programmatically build an entity data structure that can be used to query the connections between resources in your Google Cloud environment. What should you do?

- A. Create a Bash script to iterate through various resource types using gcloud CLI commands, and export a CSV file. Load this data into BigQuery for analysis.
- B. Employ attack path simulation with high-value resource sets to simulate potential lateral movement.
- C. Use the Cloud Asset Inventory relationship table, and ingest the data into Spanner Graph.**
- D. Navigate to the Asset Query tab, and join resources from the Cloud Asset Inventory resource table. Export the results to BigQuery for analysis.

正解: C

#### 解説:

##### Comprehensive and Detailed Explanation

The key requirement is to programmatically build a data structure to query the connections (i.e., a graph) between resources.

Security Command Center (SCC) Enterprise is built upon the data provided by Cloud Asset Inventory (CAI).<sup>1</sup> Cloud Asset Inventory provides two primary types of data: resources (the "nodes" of a graph) and relationships (the "edges" of a graph).<sup>2</sup>

\* Option B is incorrect because it focuses on the resource table. While the resource table contains the assets themselves, it is the relationship table that specifically stores the connections between them (e.g., a `compute.googleapis.com/Instance` is ATTACHED\_TO a `compute.googleapis.com/Network`).

\* Option A (attack path simulation) is a feature that consumes this graph data; it is not the method used to build the data structure for programmatic querying.

\* Option C (Bash script) is a manual, inefficient, and incomplete method that would fail to capture the complex relationships that CAI tracks automatically.

\* Option D is the correct solution. The Cloud Asset Inventory relationship table is the precise source for all resource connections.

To effectively query these connections as an entity data structure (a graph), the ideal destination is a graph database. Spanner Graph is Google Cloud's managed graph database service, designed specifically for storing and querying highly interconnected data, making it the perfect tool for analyzing resource relationships and potential attack paths.<sup>3</sup> Exact Extract from Google Security Operations Documents:

**Relationships in Cloud Asset Inventory:** Cloud Asset Inventory (CAI) provides relationship data, which allows you to understand the connections between your Google Cloud resources.<sup>4</sup> CAI models relationships as a graph. You can export this relationship data for analysis. The relationship service stores information about the relationships between resources. For example, a Compute Engine instance might have a relationship with a persistent disk, or an IAM policy binding might have a relationship with a project.

**Spanner Graph:** Spanner Graph is a graph database built on Cloud Spanner that lets you store and query your graph data at scale.<sup>5</sup> It is suitable for use cases that involve complex relationships, such as security analysis, fraud detection, and recommendation engines. By ingesting the Cloud Asset Inventory relationship table into Spanner Graph, you can programmatically execute graph queries to explore connections, identify high-risk assets, and model potential lateral movement paths.

#### References:

Google Cloud Documentation: Cloud Asset Inventory > Documentation > Analyzing asset relationships Google Cloud

Documentation: Spanner > Documentation > Spanner Graph > Overview Google Cloud Documentation: Security Command Center > Documentation > Key concepts > Attack path simulation

#### 質問 # 33

Your company requires PCI DSS v4.0 compliance for its cardholder data environment (CDE) in Google Cloud. You use a Security Command Center (SCC) security posture deployment based on the PCI DSS v4.0 template to monitor for configuration drift.<sup>1</sup> This posture generates a finding indicating that a Compute Engine VM within the CDE scope has been configured with an external IP address. You need to take an immediate action to remediate the compliance drift identified by this specific SCC posture finding. What should you do?

- A. Enable and enforce the constraints/`compute.vmExternalIpAccess` organization policy constraint at the project level for the project where the VM resides.
- **B. Reconfigure the network interface settings for the VM to explicitly remove the assigned external IP address.**
- C. Remove the CDE-specific tag from the VM to exclude the tag from this particular PCI DSS posture evaluation scan.
- D. Navigate to the underlying Security Health Analytics (SHA) finding for `public_ip_address` on the VM and mark this finding as fixed.

#### 正解: B

#### 解説:

##### Comprehensive and Detailed Explanation

The correct answer is Option C. The question asks for the immediate action to remediate the existing compliance drift, which is the VM that already has an external IP address.

\* Option C (Remediate): Reconfiguring the VM's network interface to remove the external IP directly fixes the identified misconfiguration. This action brings the resource back into compliance, which will cause the Security Command Center finding to be automatically set to INACTIVE on its next scan.<sup>2</sup>

\* Option A (Prevent): Applying the organization policy constraints/`compute.vmExternalIpAccess` is a preventative control.<sup>3</sup> It will stop new VMs from being created with external IPs, but it is not retroactive and does not remove the external IP from the already existing VM. Therefore, it does not remediate the current finding.

\* Option B (Mask): Removing the tag simply hides the resource from the posture scan. This is a violation of compliance auditing; it masks the problem instead of fixing it.

\* Option D (Ignore): Marking a finding as fixed without actually fixing the underlying issue is incorrect and will not resolve the compliance drift. The finding will reappear as ACTIVE on the next scan.

Exact Extract from Google Security Operations Documents:

Finding deactivation after remediation: After you remediate a vulnerability or misconfiguration finding, the Security Command Center service that detected the finding automatically sets the state of the finding to INACTIVE the next time the detection service scans for the finding.<sup>4</sup> How long Security Command Center takes to set a remediated finding to INACTIVE depends on the schedule of the scan that detects the finding.<sup>5</sup>

Organization policy constraints: If enforced, the constraint constraints/compute.vmExternalIpAccess will deny the creation or update of VM instances with IPv4 external IP addresses.<sup>6</sup> This constraint is not retroactive and will not restrict the usage of external IPs on existing VM instances. To remediate an existing VM, you must modify the instance's network interface settings and remove the external IP.

References:

Google Cloud Documentation: Security Command Center > Documentation > Manage findings > Vulnerability findings > Finding deactivation after remediation<sup>7</sup> Google Cloud Documentation: Resource Manager > Documentation > Organization policy > Organization policy constraints > compute.vmExternalIpAccess

#### 質問 #34

You are part of a cybersecurity team at a large multinational corporation that uses Google Security Operations (SecOps). You have been tasked with identifying unknown command and control nodes (C2s) that are potentially active in your organization's environment. You need to generate a list of potential matches for the unknown C2s within the next 24 hours. What should you do?

- A. Write a YARA-L rule in Google SecOps that compares network traffic from endpoints to recent WHOIS registrations. **Run the rule in a retrohunt against the full tenant.**
- B. Write a YARA-L rule in Google SecOps that scans historic network outbound connections against ingested threat intelligence. Run the rule in a retrohunt against the full tenant.
- C. Load network records into BigQuery to identify endpoints that are communicating with domains outside three standard deviations of normal.
- D. Review Security Health Analytics (SHA) findings in Security Command Center (SCC).

正解： A

解説：

Comprehensive and Detailed 150 to 200 words of Explanation From Exact Extract Google Security Operations Engineer documents:

The key requirement is to hunt for unknown C2 nodes. This implies that the indicators will not exist in any current threat intelligence feed. Therefore, Option C is incorrect as it only hunts for known IoCs. Option A is also incorrect as Security Health Analytics (SHA) is a posture management tool, not a threat hunting tool.

Option D describes a classic and effective hypothesis-driven threat hunt. Attackers frequently use Newly Registered Domains (NRDs) for their C2 infrastructure, as these domains have no established reputation and are not yet on blocklists.

Google Security Operations (SecOps) allows an engineer to write a YARA-L rule that joins real-time event data (UDM network traffic) with contextual data (the entity graph or a custom lookup). An engineer can ingest WHOIS data or a feed of NRDs as context. The YARA-L rule would then compare outbound network connections against this context, looking for any communication with domains registered within the last 30-

90 days. By executing this rule as a retrohunt, the engineer can scan all historical data to "generate a list of potential matches" for this high-risk, anomalous behavior, which is a strong indicator of unknown C2 activity.

(Reference: Google Cloud documentation, "YARA-L 2.0 language syntax", "Run a YARA-L retrohunt"; "Context-aware detections with entity graph")

#### 質問 #35

You work for an organization that uses Security Command Center (SCC) with Event Threat Detection (ETD) enabled. You need to enable ETD detections for data exfiltration attempts from designated sensitive Cloud Storage buckets and BigQuery datasets. You want to minimize Cloud Logging costs. What should you do?

- A. Enable "data read" and "data write" audit logs for all Cloud Storage buckets and BigQuery datasets throughout the organization.
- B. Enable VPC Flow Logs for the VPC networks containing resources that access the sensitive Cloud Storage buckets and BigQuery datasets.
- C. **Enable "data read" audit logs only for the designated sensitive Cloud Storage buckets and BigQuery datasets.**
- D. Enable "data read" and "data write" audit logs only for the designated sensitive Cloud Storage buckets and BigQuery datasets.

## 正解: C

解説:

Comprehensive and Detailed 150 to 250 words of Explanation From Exact Extract Google Security Operations Engineer documents:

This question is a balance between enabling detection and managing cost. Event Threat Detection (ETD) identifies threats by analyzing logs, and the specific detection for data exfiltration requires Data Access audit logs.

Data Access audit logs are disabled by default because they are high-volume and can be expensive. The key requirement is to "minimize Cloud Logging costs" while still enabling the detection for specific sensitive resources.

Data exfiltration is a "data read" operation. Therefore, to meet the requirements, the organization only needs to enable "data read" audit logs. Enabling "data write" logs (Option B) is unnecessary for this detection and would add needless cost. Enabling logs for all resources (Option C) would be prohibitively expensive and violates the "minimize cost" constraint. While ETD does use VPC Flow Logs (Option D) for many network-based detections, they do not provide the resource-level detail (i.e., which bucket or dataset was accessed) required for this specific data exfiltration finding. Therefore, enabling "data read" logs only for the sensitive resources is the most precise, cost-effective solution.

(Reference: Google Cloud documentation, "Event Threat Detection overview"; "Enable Event Threat Detection"; "Cloud Logging - Data Access audit logs")

## 質問 # 36

You received an IOC from your threat intelligence feed that is identified as a suspicious domain used for command and control (C2). You want to use Google Security Operations (SecOps) to investigate whether this domain appeared in your environment. You want to search for this IOC using the most efficient approach.

What should you do?

- A. Run a raw log search to search for the domain string.
- B. Enter the IOC into the IOC Search feature, and wait for detections with this domain to appear in the Case view.
- C. Enable Group by Field in scan view to cluster events by hostname.
- D. **Configure a UDM search that queries the DNS section of the network noun.**

## 正解: D

解説:

Comprehensive and Detailed 150 to 250 words of Explanation From Exact Extract Google Security Operations Engineer documents:

The most efficient and reliable method to proactively search for a specific indicator (like a domain) in Google Security Operations is to perform a Universal Data Model (UDM) search. All ingested telemetry, including DNS logs and proxy logs, is parsed and normalized into the UDM. This allows an analyst to run a single, high-performance query against a specific, indexed field.

To search for a domain, an analyst would query a field such as network.dns.question.name or network.http.

hostname. Option B correctly identifies this as querying the "DNS section of the network noun." This approach is vastly superior to a raw log search (Option C), which is slow, inefficient, and does not leverage the normalized UDM data.

Option D (IOC Search/Matches) is a passive feature that shows automatic matches between your logs and Google's integrated threat intelligence. While it's a good place to check, a UDM search is the active, analyst-driven process for hunting for a new IoC that may have come from an external feed. Option A is a UI feature for grouping search results and is not the search method itself.

(Reference: Google Cloud documentation, "Google SecOps UDM Search overview"; "Universal Data Model noun list - Network")

## 質問 # 37

.....

当社のSecurity-Operations-Engineer認定テストは、技術スキルを向上させ、さらに重要なこととして、厳しい労働環境で明るい未来のために戦う自信を築くのに役立ちます。当社の専門家は、Security-Operations-Engineer学習ツールの開発に多くの時間とエネルギーを費やしています。あなたは私たちを信頼し、あなたの将来の発展において私たちをあなたの正直な協力者にすることができます。参考までに、Security-Operations-Engineer試験の利点をいくつかご紹介します。Security-Operations-Engineer試験の質問については、ウェブ上の次の項目を一目で確認するために時間を割くことをお勧めします。

**Security-Operations-Engineer関連資料:** <https://www.japancert.com/Security-Operations-Engineer.html>

たとえば、本当のSecurity-Operations-Engineer試験問題と正確な答え、支払い後即ダウンロード、Security-Operations-Engineer模擬試験100%合格が保証されています、認定試験を通して、これはSecurity-Operations-Engineer

の実際の質問であり、すべてのユーザーの共通の目標であり、信頼できるヘルパーです、Google Security-Operations-Engineer日本語練習問題 更新したら、すぐにお客様のメールボックスに送ります、Google Security-Operations-Engineer日本語練習問題 したがって、高品質の資料を使用すると、試験に効果的に合格し、安心して目標を達成できます、また、その後のリリースでユーザーがメールを変更した場合は、Japancert Security-Operations-Engineer関連資料メールを更新する必要があります、Google Security-Operations-Engineer日本語練習問題 プラットフォームで料金を支払う限り、指定された時間内に関連する試験資料をメールボックスに配信します。

先ほどはジークヴァルトに頼みごとができる雰囲気ではなかった、いつの家など知らない、たとえば、本当のSecurity-Operations-Engineer試験問題と正確な答え、支払い後即ダウンロード、Security-Operations-Engineer模擬試験100%合格が保証されています。

信頼できる-権威のあるSecurity-Operations-Engineer日本語練習問題試験-試験の準備方法Security-Operations-Engineer関連資料

認定試験を通して、これはSecurity-Operations-Engineerの実際の質問であり、すべてのユーザーの共通の目標であり、信頼できるヘルパーです、更新したら、すぐにお客様のメールボックスに送ります、したがって、高品質の資料を使用すると、試験に効果的に合格し、安心して目標を達成できます。

また、その後のリリースでユーザーが Security-Operations-Engineer ルールを変更した場合は、Japancert メールを更新する必要があります。