

高品質なARA-C01テスト資料一回合格-便利なARA-C01資格準備

ちなみに、Xhs1991 ARA-C01の一部をクラウドストレージからダウンロードできます: <https://drive.google.com/open?id=1pnk0WZqSOwqfmJU037oUGeNr556l3Ylr>

すべての顧客の誠実な要件を考慮して、ARA-C01テストの質問は、高品質の製品と思いやりのあるアフターサービスを備えた候補者に約束します。試験での99%の合格率、購入前の無料トライアル、安全なプライバシー保護など、ARA-C01トレーニング資料の多くの利点がよく認識されています。顧客の観点から、最適なARA-C01模擬試験へのすべての顧客の信頼とフィードバックを大切にし、最良の選択です。

数万人の顧客は私たちのARA-C01問題集を利用したら、ARA-C01試験に合格しました。もちろん、私たちのARA-C01問題集を利用したら、唯一の収穫は試験に合格することではなく、自分の仕事またはライフスタイルを変えることもできます。ARA-C01問題集のメリットはなんですか？いろいろありますよ。例えば、覚えやすい、便利、時間を節約するということなどです。

>> ARA-C01テスト資料 <<

Snowflake ARA-C01 試験は簡単に信頼できるARA-C01テスト資料: 有効的なSnowPro Advanced Architect Certification

他のたくさんのトレーニング資料より、Xhs1991のSnowflakeのARA-C01試験トレーニング資料は一番良いものです。IT認証のトレーニング資料が必要としたら、Xhs1991のSnowflakeのARA-C01試験トレーニング資料を利用しなければ絶対後悔しますよ。Xhs1991のトレーニング資料を選んだら、あなたは一生で利益を受けることができます。

Snowflake SnowPro Advanced Architect Certification 認定 ARA-C01 試験問題 (Q21-Q26):

質問 #21

A media company needs a data pipeline that will ingest customer review data into a Snowflake table, and apply some

transformations. The company also needs to use Amazon Comprehend to do sentiment analysis and make the de-identified final data set available publicly for advertising companies who use different cloud providers in different regions.

The data pipeline needs to run continuously and efficiently as new records arrive in the object storage leveraging event notifications. Also, the operational complexity, maintenance of the infrastructure, including platform upgrades and security, and the development effort should be minimal.

Which design will meet these requirements?

- A. Ingest the data using copy into and use streams and tasks to orchestrate transformations. Export the data into Amazon S3 to do model inference with Amazon Comprehend and ingest the data back into a Snowflake table. Then create a listing in the Snowflake Marketplace to make the data available to other companies.
- B. Ingest the data using Snowpipe and use streams and tasks to orchestrate transformations. Create an external function to do model inference with Amazon Comprehend and write the final records to a Snowflake table. Then create a listing in the Snowflake Marketplace to make the data available to other companies.
- C. Ingest the data into Snowflake using Amazon EMR and PySpark using the Snowflake Spark connector. Apply transformations using another Spark job. Develop a python program to do model inference by leveraging the Amazon Comprehend text analysis API. Then write the results to a Snowflake table and create a listing in the Snowflake Marketplace to make the data available to other companies.
- D. Ingest the data using Snowpipe and use streams and tasks to orchestrate transformations. Export the data into Amazon S3 to do model inference with Amazon Comprehend and ingest the data back into a Snowflake table. Then create a listing in the Snowflake Marketplace to make the data available to other companies.

正解： B

解説：

Option B is the best design to meet the requirements because it uses Snowpipe to ingest the data continuously and efficiently as new records arrive in the object storage, leveraging event notifications. Snowpipe is a service that automates the loading of data from external sources into Snowflake tables¹. It also uses streams and tasks to orchestrate transformations on the ingested data. Streams are objects that store the change history of a table, and tasks are objects that execute SQL statements on a schedule or when triggered by another task². Option B also uses an external function to do model inference with Amazon Comprehend and write the final records to a Snowflake table. An external function is a user-defined function that calls an external API, such as Amazon Comprehend, to perform computations that are not natively supported by Snowflake³.

Finally, option B uses the Snowflake Marketplace to make the de-identified final data set available publicly for advertising companies who use different cloud providers in different regions. The Snowflake Marketplace is a platform that enables data providers to list and share their data sets with data consumers, regardless of the cloud platform or region they use⁴.

Option A is not the best design because it uses copy into to ingest the data, which is not as efficient and continuous as Snowpipe. Copy into is a SQL command that loads data from files into a table in a single transaction. It also exports the data into Amazon S3 to do model inference with Amazon Comprehend, which adds an extra step and increases the operational complexity and maintenance of the infrastructure.

Option C is not the best design because it uses Amazon EMR and PySpark to ingest and transform the data, which also increases the operational complexity and maintenance of the infrastructure. Amazon EMR is a cloud service that provides a managed Hadoop framework to process and analyze large-scale data sets.

PySpark is a Python API for Spark, a distributed computing framework that can run on Hadoop. Option C also develops a python program to do model inference by leveraging the Amazon Comprehend text analysis API, which increases the development effort.

Option D is not the best design because it is identical to option A, except for the ingestion method. It still exports the data into Amazon S3 to do model inference with Amazon Comprehend, which adds an extra step and increases the operational complexity and maintenance of the infrastructure.

References: 1: Snowpipe Overview 2: Using Streams and Tasks to Automate Data Pipelines 3: External Functions Overview 4: Snowflake Data Marketplace Overview : [Loading Data Using COPY INTO] : [What is Amazon EMR?] : [PySpark Overview]

質問 # 22

A large manufacturing company runs a dozen individual Snowflake accounts across its business divisions. The company wants to increase the level of data sharing to support supply chain optimizations and increase its purchasing leverage with multiple vendors. The company's Snowflake Architects need to design a solution that would allow the business divisions to decide what to share, while minimizing the level of effort spent on configuration and management. Most of the company divisions use Snowflake accounts in the same cloud deployments with a few exceptions for European-based divisions.

According to Snowflake recommended best practice, how should these requirements be met?

- A. Deploy a Private Data Exchange and use replication to allow European data shares in the Exchange.
- B. Deploy a Private Data Exchange in combination with data shares for the European accounts.
- C. Migrate the European accounts in the global region and manage shares in a connected graph architecture. Deploy a Data

Exchange.

- D. Deploy to the Snowflake Marketplace making sure that `invoker_share()` is used in all secure views.

正解: A

解説:

According to Snowflake recommended best practice, the requirements of the large manufacturing company should be met by deploying a Private Data Exchange in combination with data shares for the European accounts. A Private Data Exchange is a feature of the Snowflake Data Cloud platform that enables secure and governed sharing of data between organizations. It allows Snowflake customers to create their own data hub and invite other parts of their organization or external partners to access and contribute data sets. A Private Data Exchange provides centralized management, granular access control, and data usage metrics for the data shared in the exchange¹. A data share is a secure and direct way of sharing data between Snowflake accounts without having to copy or move the data. A data share allows the data provider to grant privileges on selected objects in their account to one or more data consumers in other accounts². By using a Private Data Exchange in combination with data shares, the company can achieve the following benefits:

- * The business divisions can decide what data to share and publish it to the Private Data Exchange, where it can be discovered and accessed by other members of the exchange. This reduces the effort and complexity of managing multiple data sharing relationships and configurations.
- * The company can leverage the existing Snowflake accounts in the same cloud deployments to create the Private Data Exchange and invite the members to join. This minimizes the migration and setup costs and leverages the existing Snowflake features and security.
- * The company can use data shares to share data with the European accounts that are in different regions or cloud platforms. This allows the company to comply with the regional and regulatory requirements for data sovereignty and privacy, while still enabling data collaboration across the organization.
- * The company can use the Snowflake Data Cloud platform to perform data analysis and transformation
- * on the shared data, as well as integrate with other data sources and applications. This enables the company to optimize its supply chain and increase its purchasing leverage with multiple vendors.

質問 #23

What is a characteristic of event notifications in Snowpipe?

- A. The load history is stored in the metadata of the target table.
- B. Snowflake can process all older notifications when a paused pipe is resumed.
- C. Notifications identify the cloud storage event and the actual data in the files.
- D. When a pipe is paused, event messages received for the pipe enter a limited retention period.

正解: D

解説:

Event notifications in Snowpipe are messages sent by cloud storage providers to notify Snowflake of new or modified files in a stage. Snowpipe uses these notifications to trigger data loading from the stage to the target table. When a pipe is paused, event messages received for the pipe enter a limited retention period, which varies depending on the cloud storage provider. If the pipe is not resumed within the retention period, the event messages will be discarded and the data will not be loaded automatically. To load the data, the pipe must be resumed and the `COPY` command must be executed manually. This is a characteristic of event notifications in Snowpipe that distinguishes them from other options. References: Snowflake Documentation: Using Snowpipe, Snowflake Documentation: Pausing and Resuming a Pipe

質問 #24

A company has a source system that provides JSON records for various IoT operations. The JSON is loading directly into a persistent table with a variant field. The data is quickly growing to 100s of millions of records and performance is becoming an issue. There is a generic access pattern that is used to filter on the `create_date` key within the variant field.

What can be done to improve performance?

- A. Alter the target table to include additional fields pulled from the JSON records. This would include a `create_date` field with a datatype of time stamp. When this field is used in the filter, partition pruning will occur.
- B. Alter the target table to include additional fields pulled from the JSON records. This would include a `create_date` field with a datatype of varchar. When this field is used in the filter, partition pruning will occur.
- C. Incorporate the use of multiple tables partitioned by date ranges. When a user or process needs to query a particular date range, ensure the appropriate base table is used.

- D. Validate the size of the warehouse being used. If the record count is approaching 100s of millions, size XL will be the minimum size required to process this amount of data.

正解: A

解説:

- * The correct answer is A because it improves the performance of queries by reducing the amount of data scanned and processed. By adding a `create_date` field with a timestamp data type, Snowflake can automatically cluster the table based on this field and prune the micro-partitions that do not match the filter condition. This avoids the need to parse the JSON data and access the `variant` field for every record.
- * Option B is incorrect because it does not improve the performance of queries. By adding a `create_date` field with a varchar data type, Snowflake cannot automatically cluster the table based on this field and prune the micro-partitions that do not match the filter condition. This still requires parsing the JSON data and accessing the `variant` field for every record.
- * Option C is incorrect because it does not address the root cause of the performance issue. By validating the size of the warehouse being used, Snowflake can adjust the compute resources to match the data volume and parallelize the query execution. However, this does not reduce the amount of data scanned and processed, which is the main bottleneck for queries on JSON data.
- * Option D is incorrect because it adds unnecessary complexity and overhead to the data loading and querying process. By incorporating the use of multiple tables partitioned by date ranges, Snowflake can reduce the amount of data scanned and processed for queries that specify a date range. However, this requires creating and maintaining multiple tables, loading data into the appropriate table based on the date, and joining the tables for queries that span multiple date ranges. References:
 - * Snowflake Documentation: Loading Data Using Snowpipe: This document explains how to use Snowpipe to continuously load data from external sources into Snowflake tables. It also describes the syntax and usage of the `COPY INTO` command, which supports various options and parameters to control the loading behavior, such as `ON_ERROR`, `PURGE`, and `SKIP_FILE`.
 - * Snowflake Documentation: Date and Time Data Types and Functions: This document explains the different data types and functions for working with date and time values in Snowflake. It also describes how to set and change the session timezone and the system timezone.
 - * Snowflake Documentation: Querying Metadata: This document explains how to query the metadata of the objects and operations in Snowflake using various functions, views, and tables. It also describes how to access the copy history information using the `COPY_HISTORY` function or the `COPY_HISTORY` view.
 - * Snowflake Documentation: Loading JSON Data: This document explains how to load JSON data into Snowflake tables using various methods, such as the `COPY INTO` command, the `INSERT` command, or the `PUT` command. It also describes how to access and query JSON data using the dot notation, the `FLATTEN` function, or the `LATERAL` join.
 - * Snowflake Documentation: Optimizing Storage for Performance: This document explains how to optimize the storage of data in Snowflake tables to improve the performance of queries. It also describes the concepts and benefits of automatic clustering, search optimization service, and materialized views.

質問 # 25

What Snowflake features should be leveraged when modeling using Data Vault?

- A. Snowflake's support of multi-table inserts into the data model's Data Vault tables
- B. Scaling up the virtual warehouses will support parallel processing of new source loads
- C. Data needs to be pre-partitioned to obtain a superior data access performance
- D. Snowflake's ability to hash keys so that hash key joins can run faster than integer joins

正解: A、B

解説:

These two features are relevant for modeling using Data Vault on Snowflake. Data Vault is a data modeling approach that organizes data into hubs, links, and satellites. Data Vault is designed to enable high scalability, flexibility, and performance for data integration and analytics. Snowflake is a cloud data platform that supports various data modeling techniques, including Data Vault. Snowflake provides some features that can enhance the Data Vault modeling, such as:

- * Snowflake's support of multi-table inserts into the data model's Data Vault tables. Multi-table inserts (MTI) are a feature that allows inserting data from a single query into multiple tables in a single DML statement. MTI can improve the performance and efficiency of loading data into Data Vault tables, especially for real-time or near-real-time data integration. MTI can also reduce the complexity and maintenance of the loading code, as well as the data duplication and latency¹².
- * Scaling up the virtual warehouses will support parallel processing of new source loads. Virtual warehouses are a feature that allows provisioning compute resources on demand for data processing. Virtual warehouses can be scaled up or down by changing the size of the warehouse, which determines the number of servers in the warehouse. Scaling up the virtual warehouses can improve the performance and concurrency of processing new source loads into Data Vault tables, especially for large or complex data sets. Scaling up the virtual warehouses can also leverage the parallelism and

distribution of Snowflake's architecture, which can optimize the data loading and querying³⁴.

References:

- * Snowflake Documentation: Multi-table Inserts
- * Snowflake Blog: Tips for Optimizing the Data Vault Architecture on Snowflake
- * Snowflake Documentation: Virtual Warehouses
- * Snowflake Blog: Building a Real-Time Data Vault in Snowflake

質問 #26

.....

SnowflakeのARA-C01試験は大変です。あなたは復習資料に悩んでいるかもしれません。我々Xhs1991の提供するSnowflakeのARA-C01ソフトを利用して自分の圧力を減少しましょう。我々のチームは複雑な問題集を整理するに通じて、毎年の試験の問題を分析して最高のSnowflakeのARA-C01ソフトを作成します。今まで、我々は更新を努力しています。ご購入した後の一年間で、SnowflakeのARA-C01試験が更新されたら、あなたを理解させます。

ARA-C01資格準備: <https://www.xhs1991.com/ARA-C01.html>

Snowflake ARA-C01テスト資料 まず、資料の更新を研究する上で非常に良い仕事をしました、準備プロセス、我々社のARA-C01模擬練習を使用して資格認定試験試験に失敗したら、100%返金保証します、ますます多くの企業が、候補者のARA-C01認定に高い注意を払うようになっていることがわかっています、我々Xhs1991サイトはすべてのSnowflake ARA-C01試験に準備する受験生の最も信頼できる強いバックアップです、Snowflake ARA-C01テスト資料もし学習教材は問題があれば、或いは試験に不合格になる場合は、全額返金することを保証いたします、Snowflake ARA-C01テスト資料同時に、オンライン使用をサポートできますので、通学中であれば、通勤中であれば、スマートでいつでもどこでも勉強できます。

その指示された相手の人物の口座につないだ、遠からずご赦免になるから、じたばたするなどといった文面の、まず、資料の更新を研究する上で非常に良い仕事をしました、準備プロセス、我々社のARA-C01模擬練習を使用して資格認定試験試験に失敗したら、100%返金保証します。

ARA-C01試験の準備方法 | 実用的なARA-C01テスト資料試験 | 検証する SnowPro Advanced Architect Certification資格準備

ますます多くの企業が、候補者のARA-C01認定に高い注意を払うようになっていることがわかっています、我々Xhs1991サイトはすべてのSnowflake ARA-C01試験に準備する受験生の最も信頼できる強いバックアップです。

- ARA-C01関連試験 □ ARA-C01試験復習赤本 □ ARA-C01前提条件 □ ✓ www.passtest.jp □ ✓ □で ➔ ARA-C01 □□□を検索して、無料でダウンロードしてください ARA-C01試験関連情報
- 完璧なSnowflake ARA-C01テスト資料 - 合格スムーズARA-C01資格準備 | 最高のARA-C01専門知識 □ 【 www.goshiken.com 】で使える無料オンライン版 ➔ ARA-C01 □□□の試験問題ARA-C01認定資格
- ARA-C01参考書 □ ARA-C01受験記対策 □ ARA-C01全真模擬試験 □ ⇒ www.passtest.jp ⇌ から □ ARA-C01 □を検索して、試験資料を無料でダウンロードしてください ARA-C01合格内容
- ユニークなARA-C01テスト資料 - 合格スムーズARA-C01資格準備 | 検証するARA-C01専門知識 □ □ www.goshiken.com □を開き、{ ARA-C01 }を入力して、無料でダウンロードしてください ARA-C01難易度
- ユニークなARA-C01テスト資料 - 合格スムーズARA-C01資格準備 | 検証するARA-C01専門知識 □ ✓ jp.fast2test.com □✓ □には無料の《 ARA-C01 》問題集があります ARA-C01試験解答
- ARA-C01技術問題 □ ARA-C01前提条件 □ ARA-C01資格模擬 □ [www.goshiken.com]を入力して ➔ ARA-C01 □を検索し、無料でダウンロードしてください ARA-C01前提条件
- 高品質なARA-C01テスト資料 - 合格スムーズARA-C01資格準備 | 信頼できるARA-C01専門知識 □ □ www.japancert.com □には無料の□ ARA-C01 □問題集があります ARA-C01難易度
- ARA-C01試験復習赤本 □ ARA-C01受験記 □ ARA-C01試験解答 □ ➔ www.goshiken.com □にて限定無料の《 ARA-C01 》問題集をダウンロードせよ ARA-C01受験記対策
- 高品質のARA-C01テスト資料と有効的なARA-C01資格準備 □ □ ✓ ARA-C01 □✓ □の試験問題は ➔ www.passtest.jp □で無料配信中 ARA-C01試験関連情報
- 権威のあるARA-C01テスト資料一回合格-信頼できるARA-C01資格準備 □ (www.goshiken.com) は、 ➔ ARA-C01 □を無料でダウンロードするのに最適なサイトです ARA-C01日本語練習問題
- ARA-C01日本語練習問題 □ ARA-C01前提条件 □ ARA-C01全真模擬試験 □ ➔ www.passtest.jp □を入力して ➔ ARA-C01 □を検索し、無料でダウンロードしてください ARA-C01技術問題
- myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt,

無料でクラウドストレージから最新のXhs1991 ARA-C01 PDFダンプをダウンロードする: <https://drive.google.com/open?id=1pnk0WZqSOwqfmJU037oUGeNr556B3Ylr>