

2026 Exam Data-Engineer-Associate Study Solutions - Latest Amazon AWS Certified Data Engineer - Associate (DEA-C01) - Test Data-Engineer-Associate Free

P.S. Free & New Data-Engineer-Associate dumps are available on Google Drive shared by Pass4training:
https://drive.google.com/open?id=17pdJ-Iwvcnb8LsFym_wSd2mdfdRJoCrW

In order to meet the need of all customers, there are a lot of professionals in our company. We can promise that we are going to provide you with 24-hours online efficient service after you buy our AWS Certified Data Engineer - Associate (DEA-C01) guide torrent. We are willing to help you solve your all problem. If you purchase our Data-Engineer-Associate test guide, you will have the right to ask us any question about our products, and we are going to answer your question immediately, because we hope that we can help you solve your problem about our Data-Engineer-Associate Exam Questions in the shortest time. We can promise that our online workers will be online every day. If you buy our Data-Engineer-Associate test guide, we can make sure that we will offer you help in the process of using our Data-Engineer-Associate exam questions. You will have the opportunity to enjoy the best service from our company.

Data-Engineer-Associate certification can help you prove your strength and increase social competitiveness. Although it is not an easy thing for somebody to pass the exam, but our Data-Engineer-Associate exam torrent can help aggressive people to achieve their goals. This is the reason why we need to recognize the importance of getting the test Data-Engineer-Associate Certification. More qualified certification for our future employment has the effect to be reckoned with, only to have enough qualification certifications to prove their ability, can we win over rivals in the social competition.

>> Exam Data-Engineer-Associate Study Solutions <<

Test Data-Engineer-Associate Free & Data-Engineer-Associate Valid Dumps Demo

The importance of learning is well known, and everyone is struggling for their ideals, working like a busy bee. We keep learning and making progress so that we can live the life we want. Our Data-Engineer-Associate study materials help users to pass qualifying examination to obtain a qualification certificate are a way to pursue a better life. If you are a person who is looking forward to a good future and is demanding of yourself, then join the army of learning. Choosing our Data-Engineer-Associate Study Materials will definitely bring you many unexpected results.

Amazon AWS Certified Data Engineer - Associate (DEA-C01) Sample Questions (Q49-Q54):

NEW QUESTION # 49

A manufacturing company collects sensor data from its factory floor to monitor and enhance operational efficiency. The company uses Amazon Kinesis Data Streams to publish the data that the sensors collect to a data stream. Then Amazon Kinesis Data Firehose writes the data to an Amazon S3 bucket.

The company needs to display a real-time view of operational efficiency on a large screen in the manufacturing facility. Which solution will meet these requirements with the LOWEST latency?

- A. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to process the sensor data. Use a connector for Apache Flink to write data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard.
- B. Use AWS Glue bookmarks to read sensor data from the S3 bucket in real time. Publish the data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard.
- C. Configure the S3 bucket to send a notification to an AWS Lambda function when any new object is created. Use the Lambda function to publish the data to Amazon Aurora. Use Aurora as a source to create an Amazon QuickSight dashboard.
- D. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to process the sensor data. Create a new Data Firehose delivery stream to publish data directly to an Amazon Timestream database. Use the Timestream database as a source to create an Amazon QuickSight dashboard.

Answer: D

Explanation:

This solution will meet the requirements with the lowest latency because it uses Amazon Managed Service for Apache Flink to process the sensor data in real time and write it to Amazon Timestream, a fast, scalable, and serverless time series database. Amazon Timestream is optimized for storing and analyzing time series data, such as sensor data, and can handle trillions of events per day with millisecond latency. By using Amazon Timestream as a source, you can create an Amazon QuickSight dashboard that displays a real-time view of operational efficiency on a large screen in the manufacturing facility. Amazon QuickSight is a fully managed business intelligence service that can connect to various data sources, including Amazon Timestream, and provide interactive visualizations and insights¹²³.

The other options are not optimal for the following reasons:

A: Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to process the sensor data. Use a connector for Apache Flink to write data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard. This option is similar to option C, but it uses Grafana instead of Amazon QuickSight to create the dashboard.

Grafana is an open source visualization tool that can also connect to Amazon Timestream, but it requires additional steps to set up and configure, such as deploying a Grafana server on Amazon EC2, installing the Amazon Timestream plugin, and creating an IAM role for Grafana to access Timestream. These steps can increase the latency and complexity of the solution.

B: Configure the S3 bucket to send a notification to an AWS Lambda function when any new object is created. Use the Lambda function to publish the data to Amazon Aurora. Use Aurora as a source to create an Amazon QuickSight dashboard. This option is not suitable for displaying a real-time view of operational efficiency, as it introduces unnecessary delays and costs in the data pipeline. First, the sensor data is written to an S3 bucket by Amazon Kinesis Data Firehose, which can have a buffering interval of up to 900 seconds. Then, the S3 bucket sends a notification to a Lambda function, which can incur additional invocation and execution time. Finally, the Lambda function publishes the data to Amazon Aurora, a relational database that is not optimized for time series data and can have higher storage and performance costs than Amazon Timestream.

D: Use AWS Glue bookmarks to read sensor data from the S3 bucket in real time. Publish the data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard.

This option is also not suitable for displaying a real-time view of operational efficiency, as it uses AWS Glue bookmarks to read sensor data from the S3 bucket. AWS Glue bookmarks are a feature that helps AWS Glue jobs and crawlers keep track of the data that has already been processed, so that they can resume from where they left off. However, AWS Glue jobs and crawlers are not designed for real-time data processing, as they can have a minimum frequency of 5 minutes and a variable start-up time.

Moreover, this option also uses Grafana instead of Amazon QuickSight to create the dashboard, which can increase the latency and complexity of the solution.

References:

- 1: Amazon Managed Streaming for Apache Flink
- 2: Amazon Timestream
- 3: Amazon QuickSight
- 4: Analyze data in Amazon Timestream using Grafana
- 5: Amazon Kinesis Data Firehose
- 6: Amazon Aurora
- 7: AWS Glue Bookmarks
- 8: AWS Glue Job and Crawler Scheduling

NEW QUESTION # 50

A data engineer must use AWS services to ingest a dataset into an Amazon S3 data lake. The data engineer profiles the dataset and discovers that the dataset contains personally identifiable information (PII). The data engineer must implement a solution to profile the dataset and obfuscate the PII.

Which solution will meet this requirement with the LEAST operational effort?

- A. Use an Amazon Kinesis Data Firehose delivery stream to process the dataset. Create an AWS Lambda transform function to identify the PII. Use an AWS SDK to obfuscate the PII. Set the S3 data lake as the target for the delivery stream.
- B. Use the Detect PII transform in AWS Glue Studio to identify the PII. Obfuscate the PII. Use an AWS Step Functions state machine to orchestrate a data pipeline to ingest the data into the S3 data lake.
- C. Ingest the dataset into Amazon DynamoDB. Create an AWS Lambda function to identify and obfuscate the PII in the DynamoDB table and to transform the data. Use the same Lambda function to ingest the data into the S3 data lake.
- D. Use the Detect PII transform in AWS Glue Studio to identify the PII. Create a rule in AWS Glue Data Quality to obfuscate the PII. Use an AWS Step Functions state machine to orchestrate a data pipeline to ingest the data into the S3 data lake.

Answer: D

Explanation:

AWS Glue is a fully managed service that provides a serverless data integration platform for data preparation, data cataloging, and data loading. AWS Glue Studio is a graphical interface that allows you to easily author, run, and monitor AWS Glue ETL jobs.

AWS Glue Data Quality is a feature that enables you to validate, cleanse, and enrich your data using predefined or custom rules.

AWS Step Functions is a service that allows you to coordinate multiple AWS services into serverless workflows.

Using the Detect PII transform in AWS Glue Studio, you can automatically identify and label the PII in your dataset, such as names, addresses, phone numbers, email addresses, etc. You can then create a rule in AWS Glue Data Quality to obfuscate the PII, such as masking, hashing, or replacing the values with dummy data. You can also use other rules to validate and cleanse your data, such as checking for null values, duplicates, outliers, etc. You can then use an AWS Step Functions state machine to orchestrate a data pipeline to ingest the data into the S3 data lake. You can use AWS Glue DataBrew to visually explore and transform the data, AWS Glue crawlers to discover and catalog the data, and AWS Glue jobs to load the data into the S3 data lake.

This solution will meet the requirement with the least operational effort, as it leverages the serverless and managed capabilities of AWS Glue, AWS Glue Studio, AWS Glue Data Quality, and AWS Step Functions. You do not need to write any code to identify or obfuscate the PII, as you can use the built-in transforms and rules in AWS Glue Studio and AWS Glue Data Quality. You also do not need to provision or manage any servers or clusters, as AWS Glue and AWS Step Functions scale automatically based on the demand.

The other options are not as efficient as using the Detect PII transform in AWS Glue Studio, creating a rule in AWS Glue Data Quality, and using an AWS Step Functions state machine. Using an Amazon Kinesis Data Firehose delivery stream to process the dataset, creating an AWS Lambda transform function to identify the PII, using an AWS SDK to obfuscate the PII, and setting the S3 data lake as the target for the delivery stream will require more operational effort, as you will need to write and maintain code to identify and obfuscate the PII, as well as manage the Lambda function and its resources. Using the Detect PII transform in AWS Glue Studio to identify the PII, obfuscating the PII, and using an AWS Step Functions state machine to orchestrate a data pipeline to ingest the data into the S3 data lake will not be as effective as creating a rule in AWS Glue Data Quality to obfuscate the PII, as you will need to manually obfuscate the PII after identifying it, which can be error-prone and time-consuming. Ingesting the dataset into Amazon DynamoDB, creating an AWS Lambda function to identify and obfuscate the PII in the DynamoDB table and to transform the data, and using the same Lambda function to ingest the data into the S3 data lake will require more operational effort, as you will need to write and maintain code to identify and obfuscate the PII, as well as manage the Lambda function and its resources. You will also incur additional costs and complexity by using DynamoDB as an intermediate data store, which may not be necessary for your use case. Reference:

[AWS Glue](#)

[AWS Glue Studio](#)

[AWS Glue Data Quality](#)

[\[AWS Step Functions\]](#)

[\[AWS Certified Data Engineer - Associate DEA-C01 Complete Study Guide\]](#), Chapter 6: Data Integration and Transformation, Section 6.1: AWS Glue

NEW QUESTION # 51

A security company stores IoT data that is in JSON format in an Amazon S3 bucket. The data structure can change when the company upgrades the IoT devices. The company wants to create a data catalog that includes the IoT data. The company's analytics department will use the data catalog to index the data.

Which solution will meet these requirements MOST cost-effectively?

- A. Create an AWS Glue Data Catalog. Configure an AWS Glue Schema Registry. Create a new AWS Glue workload to orchestrate the ingestion of the data that the analytics department will use into Amazon Redshift Serverless.
- B. Create an Amazon Redshift provisioned cluster. Create an Amazon Redshift Spectrum database for the analytics department to explore the data that is in Amazon S3. Create Redshift stored procedures to load the data into Amazon Redshift.
- C. Create an Amazon Athena workgroup. Explore the data that is in Amazon S3 by using Apache Spark through Athena.

Provide the Athena workgroup schema and tables to the analytics department.

- D. Create an AWS Glue Data Catalog. Configure an AWS Glue Schema Registry. Create AWS Lambda user defined functions (UDFs) by using the Amazon Redshift Data API. Create an AWS Step Functions job to orchestrate the ingestion of the data that the analytics department will use into Amazon Redshift Serverless.

Answer: C

Explanation:

The best solution to meet the requirements of creating a data catalog that includes the IoT data, and allowing the analytics department to index the data, most cost-effectively, is to create an Amazon Athena workgroup, explore the data that is in Amazon S3 by using Apache Spark through Athena, and provide the Athena workgroup schema and tables to the analytics department. Amazon Athena is a serverless, interactive query service that makes it easy to analyze data directly in Amazon S3 using standard SQL or Python¹. Amazon Athena also supports Apache Spark, an open-source distributed processing framework that can run large-scale data analytics applications across clusters of servers². You can use Athena to run Spark code on data in Amazon S3 without having to set up, manage, or scale any infrastructure. You can also use Athena to create and manage external tables that point to your data in Amazon S3, and store them in an external data catalog, such as AWS Glue Data Catalog, Amazon Athena Data Catalog, or your own Apache Hive metastore³. You can create Athena workgroups to separate query execution and resource allocation based on different criteria, such as users, teams, or applications⁴. You can share the schemas and tables in your Athena workgroup with other users or applications, such as Amazon QuickSight, for data visualization and analysis⁵.

Using Athena and Spark to create a data catalog and explore the IoT data in Amazon S3 is the most cost-effective solution, as you pay only for the queries you run or the compute you use, and you pay nothing when the service is idle¹. You also save on the operational overhead and complexity of managing data warehouse infrastructure, as Athena and Spark are serverless and scalable. You can also benefit from the flexibility and performance of Athena and Spark, as they support various data formats, including JSON, and can handle schema changes and complex queries efficiently.

Option A is not the best solution, as creating an AWS Glue Data Catalog, configuring an AWS Glue Schema Registry, creating a new AWS Glue workload to orchestrate the ingestion of the data that the analytics department will use into Amazon Redshift Serverless, would incur more costs and complexity than using Athena and Spark. AWS Glue Data Catalog is a persistent metadata store that contains table definitions, job definitions, and other control information to help you manage your AWS Glue components⁶. AWS Glue Schema Registry is a service that allows you to centrally store and manage the schemas of your streaming data in AWS Glue Data Catalog⁷. AWS Glue is a serverless data integration service that makes it easy to prepare, clean, enrich, and move data between data stores⁸. Amazon Redshift Serverless is a feature of Amazon Redshift, a fully managed data warehouse service, that allows you to run and scale analytics without having to manage data warehouse infrastructure⁹. While these services are powerful and useful for many data engineering scenarios, they are not necessary or cost-effective for creating a data catalog and indexing the IoT data in Amazon S3. AWS Glue Data Catalog and Schema Registry charge you based on the number of objects stored and the number of requests made^{6,7}. AWS Glue charges you based on the compute time and the data processed by your ETL jobs⁸.

Amazon Redshift Serverless charges you based on the amount of data scanned by your queries and the compute time used by your workloads⁹. These costs can add up quickly, especially if you have large volumes of IoT data and frequent schema changes.

Moreover, using AWS Glue and Amazon Redshift Serverless would introduce additional latency and complexity, as you would have to ingest the data from Amazon S3 to Amazon Redshift Serverless, and then query it from there, instead of querying it directly from Amazon S3 using Athena and Spark.

Option B is not the best solution, as creating an Amazon Redshift provisioned cluster, creating an Amazon Redshift Spectrum database for the analytics department to explore the data that is in Amazon S3, and creating Redshift stored procedures to load the data into Amazon Redshift, would incur more costs and complexity than using Athena and Spark. Amazon Redshift provisioned clusters are clusters that you create and manage by specifying the number and type of nodes, and the amount of storage and compute capacity¹⁰. Amazon Redshift Spectrum is a feature of Amazon Redshift that allows you to query and join data across your data warehouse and your data lake using standard SQL¹¹. Redshift stored procedures are SQL statements that you can define and store in Amazon Redshift, and then call them by using the CALL command¹². While these features are powerful and useful for many data warehousing scenarios, they are not necessary or cost-effective for creating a data catalog and indexing the IoT data in Amazon S3. Amazon Redshift provisioned clusters charge you based on the node type, the number of nodes, and the duration of the cluster¹⁰. Amazon Redshift Spectrum charges you based on the amount of data scanned by your queries¹¹. These costs can add up quickly, especially if you have large volumes of IoT data and frequent schema changes. Moreover, using Amazon Redshift provisioned clusters and Spectrum would introduce additional latency and complexity, as you would have to provision and manage the cluster, create an external schema and database for the data in Amazon S3, and load the data into the cluster using stored procedures, instead of querying it directly from Amazon S3 using Athena and Spark.

Option D is not the best solution, as creating an AWS Glue Data Catalog, configuring an AWS Glue Schema Registry, creating AWS Lambda user defined functions (UDFs) by using the Amazon Redshift Data API, and creating an AWS Step Functions job to orchestrate the ingestion of the data that the analytics department will use into Amazon Redshift Serverless, would incur more costs and complexity than using Athena and Spark. AWS Lambda is a serverless compute service that lets you run code without provisioning or managing servers¹³. AWS Lambda UDFs are Lambda functions that you can invoke from within an Amazon Redshift query. Amazon Redshift Data API is a service that allows you to run SQL statements on Amazon Redshift clusters using HTTP requests, without needing a persistent connection. AWS Step Functions is a service that lets you coordinate multiple AWS

services into serverless workflows. While these services are powerful and useful for many data engineering scenarios, they are not necessary or cost-effective for creating a data catalog and indexing the IoT data in Amazon S3. AWS Glue Data Catalog and Schema Registry charge you based on the number of objects stored and the number of requests made⁶⁷. AWS Lambda charges you based on the number of requests and the duration of your functions¹³. Amazon Redshift Serverless charges you based on the amount of data scanned by your queries and the compute time used by your workloads⁹. AWS Step Functions charges you based on the number of state transitions in your workflows. These costs can add up quickly, especially if you have large volumes of IoT data and frequent schema changes. Moreover, using AWS Glue, AWS Lambda, Amazon Redshift Data API, and AWS Step Functions would introduce additional latency and complexity, as you would have to create and invoke Lambda functions to ingest the data from Amazon S3 to Amazon Redshift Serverless using the Data API, and coordinate the ingestion process using Step Functions, instead of querying it directly from Amazon S3 using Athena and Spark. References:

- * What is Amazon Athena?
- * Apache Spark on Amazon Athena
- * Creating tables, updating the schema, and adding new partitions in the Data Catalog from AWS Glue ETL jobs
- * Managing Athena workgroups
- * Using Amazon QuickSight to visualize data in Amazon Athena
- * AWS Glue Data Catalog
- * AWS Glue Schema Registry
- * What is AWS Glue?
- * Amazon Redshift Serverless
- * Amazon Redshift provisioned clusters
- * Querying external data using Amazon Redshift Spectrum
- * Using stored procedures in Amazon Redshift
- * What is AWS Lambda?
- * [Creating and using AWS Lambda UDFs]
- * [Using the Amazon Redshift Data API]
- * [What is AWS Step Functions?]
- * AWS Certified Data Engineer - Associate DEA-C01 Complete Study Guide

NEW QUESTION # 52

A manufacturing company wants to collect data from sensors. A data engineer needs to implement a solution that ingests sensor data in near real time.

The solution must store the data to a persistent data store. The solution must store the data in nested JSON format. The company must have the ability to query from the data store with a latency of less than 10 milliseconds.

Which solution will meet these requirements with the LEAST operational overhead?

- A. Use AWS Lambda to process the sensor data. Store the data in Amazon S3 for querying.
- B. Use Amazon Kinesis Data Streams to capture the sensor data. Store the data in Amazon DynamoDB for querying.
- C. Use a self-hosted Apache Kafka cluster to capture the sensor data. Store the data in Amazon S3 for querying.
- D. Use Amazon Simple Queue Service(Amazon SQS) to buffer incoming sensor data. Use AWS Glue to store the data in Amazon RDS for querying.

Answer: B

Explanation:

Amazon Kinesis Data Streams is a service that enables you to collect, process, and analyze streaming data in real time. You can use Kinesis Data Streams to capture sensor data from various sources, such as IoT devices, web applications, or mobile apps. You can create data streams that can scale up to handle any amount of data from thousands of producers. You can also use the Kinesis Client Library (KCL) or the Kinesis Data Streams API to write applications that process and analyze the data in the streams¹. Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance with seamless scalability. You can use DynamoDB to store the sensor data in nested JSON format, as DynamoDB supports document data types, such as lists and maps. You can also use DynamoDB to query the data with a latency of less than 10 milliseconds, as DynamoDB offers single-digit millisecond performance for any scale of data. You can use the DynamoDB API or the AWS SDKs to perform queries on the data, such as using key-value lookups, scans, or queries².

The solution that meets the requirements with the least operational overhead is to use Amazon Kinesis Data Streams to capture the sensor data and store the data in Amazon DynamoDB for querying. This solution has the following advantages:

It does not require you to provision, manage, or scale any servers, clusters, or queues, as Kinesis Data Streams and DynamoDB are fully managed services that handle all the infrastructure for you. This reduces the operational complexity and cost of running your solution.

It allows you to ingest sensor data in near real time, as Kinesis Data Streams can capture data records as they are produced and deliver them to your applications within seconds. You can also use Kinesis Data Firehose to load the data from the streams to

DynamoDB automatically and continuously3.

It allows you to store the data in nested JSON format, as DynamoDB supports document data types, such as lists and maps. You can also use DynamoDB Streams to capture changes in the data and trigger actions, such as sending notifications or updating other databases.

It allows you to query the data with a latency of less than 10 milliseconds, as DynamoDB offers single-digit millisecond performance for any scale of data. You can also use DynamoDB Accelerator (DAX) to improve the read performance by caching frequently accessed data.

Option A is incorrect because it suggests using a self-hosted Apache Kafka cluster to capture the sensor data and store the data in Amazon S3 for querying. This solution has the following disadvantages:

It requires you to provision, manage, and scale your own Kafka cluster, either on EC2 instances or on-premises servers. This increases the operational complexity and cost of running your solution.

It does not allow you to query the data with a latency of less than 10 milliseconds, as Amazon S3 is an object storage service that is not optimized for low-latency queries. You need to use another service, such as Amazon Athena or Amazon Redshift Spectrum, to query the data in S3, which may incur additional costs and latency.

Option B is incorrect because it suggests using AWS Lambda to process the sensor data and store the data in Amazon S3 for querying. This solution has the following disadvantages:

It does not allow you to ingest sensor data in near real time, as Lambda is a serverless compute service that runs code in response to events. You need to use another service, such as API Gateway or Kinesis Data Streams, to trigger Lambda functions with sensor data, which may add extra latency and complexity to your solution.

It does not allow you to query the data with a latency of less than 10 milliseconds, as Amazon S3 is an object storage service that is not optimized for low-latency queries. You need to use another service, such as Amazon Athena or Amazon Redshift Spectrum, to query the data in S3, which may incur additional costs and latency.

Option D is incorrect because it suggests using Amazon Simple Queue Service (Amazon SQS) to buffer incoming sensor data and use AWS Glue to store the data in Amazon RDS for querying. This solution has the following disadvantages:

It does not allow you to ingest sensor data in near real time, as Amazon SQS is a message queue service that delivers messages in a best-effort manner. You need to use another service, such as Lambda or EC2, to poll the messages from the queue and process them, which may add extra latency and complexity to your solution.

It does not allow you to store the data in nested JSON format, as Amazon RDS is a relational database service that supports structured data types, such as tables and columns. You need to use another service, such as AWS Glue, to transform the data from JSON to relational format, which may add extra cost and overhead to your solution.

References:

1: Amazon Kinesis Data Streams - Features

2: Amazon DynamoDB - Features

3: Loading Streaming Data into Amazon DynamoDB - Amazon Kinesis Data Firehose

[4]: Capturing Table Activity with DynamoDB Streams - Amazon DynamoDB

[5]: Amazon DynamoDB Accelerator (DAX) - Features

[6]: Amazon S3 - Features

[7]: AWS Lambda - Features

[8]: Amazon Simple Queue Service - Features

[9]: Amazon Relational Database Service - Features

[10]: Working with JSON in Amazon RDS - Amazon Relational Database Service

[11]: AWS Glue - Features

NEW QUESTION # 53

A company needs a solution to manage costs for an existing Amazon DynamoDB table. The company also needs to control the size of the table. The solution must not disrupt any ongoing read or write operations. The company wants to use a solution that automatically deletes data from the table after 1 month.

Which solution will meet these requirements with the LEAST ongoing maintenance?

- A. Use an AWS Lambda function to periodically scan the DynamoDB table for data that is older than 1 month. Configure the Lambda function to delete old data.
- B. Configure a stream on the DynamoDB table to invoke an AWS Lambda function. Configure the Lambda function to delete data in the table that is older than 1 month.
- **C. Use the DynamoDB TTL feature to automatically expire data based on timestamps.**
- D. Configure a scheduled Amazon EventBridge rule to invoke an AWS Lambda function to check for data that is older than 1 month. Configure the Lambda function to delete old data.

Answer: C

Explanation:

The requirement is to manage the size of an Amazon DynamoDB table by automatically deleting data older than 1 month without disrupting ongoing read or write operations. The simplest and most maintenance-free solution is to use DynamoDB Time-to-Live (TTL).

* Option A: Use the DynamoDB TTL feature to automatically expire data based on timestamps.

DynamoDB TTL allows you to specify an attribute (e.g., a timestamp) that defines when items in the table should expire. After the expiration time, DynamoDB automatically deletes the items, freeing up storage space and keeping the table size under control without manual intervention or disruptions to ongoing operations.

Other options involve higher maintenance and manual scheduling or scanning operations, which increase complexity unnecessarily compared to the native TTL feature.

References:

* DynamoDB Time-to-Live (TTL)

NEW QUESTION # 54

.....

Our Data-Engineer-Associate desktop practice test software works after installation on Windows computers. The AWS Certified Data Engineer - Associate (DEA-C01) Data-Engineer-Associate web-based practice exam has all the features of the desktop software, but it requires an active internet connection. If you are busy in your daily routine and can't manage a proper time to sit and prepare for the Data-Engineer-Associate Certification test, our Data-Engineer-Associate PDF questions file is ideal for you. You can open and use the Data-Engineer-Associate Questions from any location at any time on your smartphones, tablets, and laptops. Questions in the AWS Certified Data Engineer - Associate (DEA-C01) Data-Engineer-Associate PDF document are updated, and real.

Test Data-Engineer-Associate Free: <https://www.pass4training.com/Data-Engineer-Associate-pass-exam-training.html>

Amazon Exam Data-Engineer-Associate Study Solutions If you want to get something done, just roll up your sleeves and do it, Your exam preparation with our Amazon Data-Engineer-Associate braindumps is altogether profitable, Amazon Exam Data-Engineer-Associate Study Solutions You will never enjoy life if you always stay in your comfort zone, Amazon Exam Data-Engineer-Associate Study Solutions What's more, it has virtue of strong function, and shortens a lot of time, You feel like sitting in the real Data-Engineer-Associate exam while taking these AWS Certified Data Engineer - Associate (DEA-C01) (Data-Engineer-Associate) practice exams.

Only the 'request' object instance is passed into the function, and a 'Response' Data-Engineer-Associate object is returned with the text 'Hello world!' This is great if you just want to return plain text, but chances are you'll want to return a lot more.

New Exam Data-Engineer-Associate Study Solutions | Professional Amazon Data-Engineer-Associate: AWS Certified Data Engineer - Associate (DEA-C01) 100% Pass

This reflects the need for retaining application data Test Data-Engineer-Associate Free long after the application has run, If you want to get something done, just roll up your sleeves and do it.

Your exam preparation with our Amazon Data-Engineer-Associate Braindumps is altogether profitable, You will never enjoy life if you always stay in your comfort zone, What's more, it has virtue of strong function, and shortens a lot of time.

You feel like sitting in the real Data-Engineer-Associate exam while taking these AWS Certified Data Engineer - Associate (DEA-C01) (Data-Engineer-Associate) practice exams.

- Amazon Data-Engineer-Associate Dumps PDF Questions Quick Tips To Pass-[www.exam4labs.com] □ Search for « Data-Engineer-Associate » and easily obtain a free download on 「 www.exam4labs.com 」 □Latest Data-Engineer-Associate Exam Notes
- 100% Pass Quiz 2026 Data-Engineer-Associate: AWS Certified Data Engineer - Associate (DEA-C01) Authoritative Exam Study Solutions □ Enter { www.pdfvce.com } and search for ▶ Data-Engineer-Associate ◀ to download for free □Data-Engineer-Associate Reliable Test Tutorial
- Data-Engineer-Associate Valid Test Voucher □ Data-Engineer-Associate Test Prep □ Data-Engineer-Associate New Real Test □ Download ▷ Data-Engineer-Associate ◁ for free by simply searching on (www.prepawayexam.com) □ □New Data-Engineer-Associate Test Practice
- Reliable Data-Engineer-Associate Exam Price □ Data-Engineer-Associate Reliable Dumps Pdf □ Data-Engineer-Associate Reliable Braindumps Questions □ Enter ✓ www.pdfvce.com □✓ □ and search for « Data-Engineer-Associate » to download for free □Reliable Data-Engineer-Associate Exam Price

BTW, DOWNLOAD part of Pass4training Data-Engineer-Associate dumps from Cloud Storage: https://drive.google.com/open?id=17pdJ-Iwvcnb8LsFym_wSd2mdfdRJoCrW