

Valid Braindumps KCNA Ebook | Exam KCNA Papers

O'REILLY®

Kubernetes and Cloud Native Associate (KCNA) Study Guide

In Depth Exam Prep and Practice

Adrian Gonzalez Sanchez
& Jorge Valenzuela

DOWNLOAD the newest Exam4Labs KCNA PDF dumps from Cloud Storage for free: <https://drive.google.com/open?id=1v-dNcKgyVLJJZVTnmcMEoFRspGGU5SF>

Exam4Labs's website pages list the important information about our KCNA real quiz, the exam name and code, the updated time, the total quantity of the questions and answers, the characteristics and merits of the product, the price, the discounts to the client, the details of our KCNA training materials, the contact methods, the evaluations of the client on our KCNA learning guide. You can analyze the information the website pages provide carefully before you decide to buy our KCNA real quiz. Also our pass rate is high as 99% to 100%, you will pass the KCNA exam for sure.

Linux Foundation KCNA Certification Exam is an excellent way for IT professionals to demonstrate their proficiency in Kubernetes and cloud native technologies. KCNA exam is challenging, but the certification can open up new career opportunities and increase earning potential. Kubernetes and Cloud Native Associate certification also provides access to a community of experts in the field and offers opportunities for further professional development. Overall, the Linux Foundation KCNA Certification Exam is a valuable investment for IT professionals who want to stay ahead of the curve in the rapidly evolving world of cloud computing.

Upon passing the KCNA Certification Exam, candidates will receive a digital badge and certificate that can be shared on social media and added to their resume. Kubernetes and Cloud Native Associate certification serves as a valuable credential for individuals seeking employment in cloud computing and can help them stand out from other candidates.

>> Valid Braindumps KCNA Ebook <<

Exam KCNA Papers, KCNA Minimum Pass Score

No doubt Linux Foundation KCNA exam practice test questions are the recommended Kubernetes and Cloud Native Associate

KCNA exam preparation resources that make the Linux Foundation KCNA exam preparation simple and easiest. To do this you need to download updated and real KCNA exam questions which you can get from the Exam4Labs platform easily. At the Exam4Labs you can easily download valid, updated, and real KCNA Exam Practice questions. All these Linux Foundation KCNA PDF Dumps are verified and recommended by qualified Linux Foundation KCNA exam trainers. So you rest assured that with the Linux Foundation KCNA exam real questions you will get everything that you need to prepare, learn and pass the difficult Linux Foundation KCNA exam with confidence.

Linux Foundation Kubernetes and Cloud Native Associate Sample Questions (Q174-Q179):

NEW QUESTION # 174

Which of the following is a challenge derived from running cloud native applications?

- A. The lack of different container images available in public image repositories.
- B. The operational costs of maintaining the data center of the company.
- C. Cost optimization is complex to maintain across different public cloud environments.
- D. The lack of services provided by the most common public clouds.

Answer: C

Explanation:

The correct answer is B. Cloud-native applications often run across multiple environments-different cloud providers, regions, accounts/projects, and sometimes hybrid deployments. This introduces real cost-management complexity: pricing models differ (compute types, storage tiers, network egress), discount mechanisms vary (reserved capacity, savings plans), and telemetry/charge attribution can be inconsistent. When you add Kubernetes, the abstraction layer can further obscure cost drivers because costs are incurred at the infrastructure level (nodes, disks, load balancers) while consumption happens at the workload level (namespaces, Pods, services).

Option A is less relevant because cloud-native adoption often reduces dependence on maintaining a private datacenter; many organizations adopt cloud-native specifically to avoid datacenter CapEx/ops overhead. Option C is generally untrue-public registries and vendor registries contain vast numbers of images; the challenge is more about provenance, security, and supply chain than "lack of images." Option D is incorrect because major clouds offer abundant services; the difficulty is choosing among them and controlling cost/complexity, not a lack of services.

Cost optimization being complex is a recognized challenge because cloud-native architectures include microservices sprawl, autoscaling, ephemeral environments, and pay-per-use dependencies (managed databases, message queues, observability). Small misconfigurations can cause big bills: noisy logs, over-requested resources, unbounded HPA scaling, and egress-heavy architectures. That's why practices like FinOps, tagging/labeling for allocation, and automated guardrails are emphasized.

So the best answer describing a real, common cloud-native challenge is B.

NEW QUESTION # 175

What native runtime is Open Container Initiative (OCI) compliant?

- A. gvisor
- B. kata-containers
- C. runV
- D. runC

Answer: D

Explanation:

The Open Container Initiative (OCI) publishes open specifications for container images and container runtimes so that tools across the ecosystem remain interoperable. When a runtime is "OCI-compliant," it means it implements the OCI Runtime Specification (how to run a container from a filesystem bundle and configuration) and/or works cleanly with OCI image formats through the usual layers (image → unpack → runtime). runC is the best-known, widely used reference implementation of the OCI runtime specification and is the low-level runtime underneath many higher-level systems. In Kubernetes, you typically interact with a higher-level container runtime (such as containerd or CRI-O) through the Container Runtime Interface (CRI). That higher-level runtime then uses a low-level OCI runtime to actually create Linux namespaces/cgroups, set up the container process, and start it. In many default installations, containerd delegates to runC for this low-level "create/start" work.

The other options are related but differ in what they are: Kata Containers uses lightweight VMs to provide stronger isolation while still presenting a container-like workflow; gVisor provides a user-space kernel for sandboxing containers; these can be used with Kubernetes via compatible integrations, but the canonical "native OCI runtime" answer in most curricula is runC. Finally, "runV" is

not a common modern Kubernetes runtime choice in typical OCI discussions. So the most correct, standards-based answer here is A (runC) because it directly implements the OCI runtime spec and is commonly used as the default low-level runtime behind CRI implementations.

NEW QUESTION # 176

Explain the difference between a Deployment and a StatefulSet in Kubernetes.

- A. Deployments are used for stateless applications, while StatefulSets are used for stateful applications that require persistent storage and unique identities.
- B. Deployments handle rolling updates, while StatefulSets only support manual updates.
- C. Deployments are used for managing the lifecycle of a single Pod, while StatefulSets manage multiple Pods.
- D. Deployments are used for deploying and managing stateless applications, while StatefulSets are used for deploying and managing stateful applications.
- E. Deployments are responsible for scheduling Pods, while StatefulSets manage the lifecycle of Services.

Answer: A,D

Explanation:

Deployments are used for deploying and managing stateless applications, while StatefulSets are used for deploying and managing stateful applications. Deployments are ideal for applications where the state of each Pod is not important, while StatefulSets are designed for applications that require persistent storage, unique network identities, and ordered scaling.

NEW QUESTION # 177

Which of the following options include resources cleaned by the Kubernetes garbage collection mechanism?

- A. Terminated pods, completed jobs, and objects without owner references.
- B. Unused container and container images, and obsolete logs from the kubelet.
- C. Stale or expired CertificateSigningRequests (CSRs) and old deployments.
- D. Nodes deleted by a cloud controller manager and obsolete logs from the kubelet.

Answer: A

Explanation:

Kubernetes garbage collection (GC) is about cleaning up API objects and related resources that are no longer needed, so the correct answer is D. Two big categories it targets are (1) objects that have finished their lifecycle (like terminated Pods and completed Jobs, depending on controllers and TTL policies), and (2) "dangling" objects that are no longer referenced properly-often described as objects without owner references (or where owners are gone), which can happen when a higher-level controller is deleted or when dependent resources are left behind.

A key Kubernetes concept here is OwnerReferences: many resources are created "owned" by a controller (e.g., a ReplicaSet owned by a Deployment, Pods owned by a ReplicaSet). When an owning object is deleted, Kubernetes' garbage collector can remove dependent objects based on deletion propagation policies (foreground/background/orphan). This prevents resource leaks and keeps the cluster tidy and performant.

The other options are incorrect because they refer to cleanup tasks outside Kubernetes GC's scope. Kubelet logs (B/C) are node-level files and log rotation is handled by node/runtime configuration, not the Kubernetes garbage collector. Unused container images (C) are managed by the container runtime's image GC and kubelet disk pressure management, not the Kubernetes API GC. Nodes deleted by a cloud controller (B) aren't "garbage collected" in the same sense; node lifecycle is handled by controllers and cloud integrations, but not as a generic GC cleanup category like ownerRef-based object deletion.

So, when the question asks specifically about "resources cleaned by Kubernetes garbage collection," it's pointing to Kubernetes object lifecycle cleanup: terminated Pods, completed Jobs, and orphaned objects-exactly what option D states.

NEW QUESTION # 178

Which is the correct kubectl command to display logs in real time?

- A. kubectl logs -c test-container-1
- B. **kubectl logs -f test-container-1**
- C. kubectl logs -l test-container-1
- D. kubectl logs -p test-container-1

Answer: B

Explanation:

To stream logs in real time with kubectl, you use the follow option `-f`, so D is correct. In Kubernetes, kubectl logs retrieves logs from containers in a Pod. By default, it returns the current log output and exits. When you add `-f`, kubectl keeps the connection open and continuously prints new log lines as they are produced, similar to `tail -f` on Linux. This is especially useful for debugging live behavior, watching startup sequences, or monitoring an application during a rollout.

The other flags serve different purposes. `-p` (as seen in option A) requests logs from the previous instance of a container (useful after a restart/crash), not real-time streaming. `-c` (option B) selects a specific container within a multi-container Pod; it doesn't stream by itself (though it can be combined with `-f`). `-l` (option C) is used with `kubectl logs` to select Pods by label, but again it is not the streaming flag; streaming requires `-f`.

In real troubleshooting, you commonly combine flags, e.g. `kubectl logs -f pod-name -c container-name` for streaming logs from a specific container, or `kubectl logs -f -l app=myapp` to stream from Pods matching a label selector (depending on kubectl behavior/version). But the key answer to "display logs in real time" is the follow flag: `-f`.

Therefore, the correct selection is D.

NEW QUESTION # 179

• • • • •

As is known to all, KCNA practice test simulation plays an important part in the success of exams. By simulation, you can get the hang of the situation of the real exam with the help of our free demo. You can fight a hundred battles with no danger of defeat. Simulation of our KCNA Training Materials make it possible to have a clear understanding of what your strong points and weak points are and at the same time, you can learn comprehensively about the exam. By combining the two aspects, you are more likely to achieve high grades in the real exam.

Exam KCNA Papers: <https://www.exam4labs.com/KCNA-practice-torrent.html>

BTW, DOWNLOAD part of Exam4Labs KCNA dumps from Cloud Storage: <https://drive.google.com/open?id=1v-dNcKgyVLJJZVTnmcdMEoFRspGGU5SF>