

Free PDF NCARB - Project-Planning-Design - ARE 5.0 Project Planning & Design (PPD) Newest Hot Questions

What's more, part of that Braindumpsqa Project-Planning-Design dumps now are free: https://drive.google.com/open?id=1h5YSt0f_R11F5NtDtawUPe14jL2xI9DD

Our Braindumpsqa can help you realize your dream to pass Project-Planning-Design certification exam by providing Project-Planning-Design test training materials. Because it concludes all training materials you need to Pass Project-Planning-Design Exam. Choosing our Braindumpsqa can absolutely help you pass Project-Planning-Design test easily, and make you become a member of elite in IT. What are you waiting for? Hurry up!

NCARB Project-Planning-Design Exam Syllabus Topics:

Topic	Details
Topic 1	<ul style="list-style-type: none">Building Systems, Materials, & Assemblies: This section of the exam measures skills of architectural designers and covers the understanding of building systems such as mechanical, electrical, and plumbing, along with structural and specialty systems. It also involves selecting appropriate materials and assemblies to align with program needs, budgets, and regulations.
Topic 2	<ul style="list-style-type: none">Project Integration of Program & Systems: This section of the exam measures skills of project architects and focuses on integrating decisions about environmental conditions, codes, and building systems into one cohesive project design. It highlights how to configure the building and incorporate both program requirements and contextual conditions in a unified design approach.
Topic 3	<ul style="list-style-type: none">Environmental Conditions & Context: This section of the exam measures skills of architectural designers and covers how to use site analysis information to determine building placement and environmental planning decisions. It emphasizes applying sustainable principles and considering the neighborhood context to guide project design.
Topic 4	<ul style="list-style-type: none">Project Costs & Budgeting: This section of the exam measures skills of architectural designers and assesses the ability to evaluate design alternatives based on program goals, perform cost evaluations, and manage cost considerations throughout the design process.

Topic 5	<ul style="list-style-type: none"> • Codes & Regulations: This section of the exam measures the skills of project architects and focuses on applying zoning laws, environmental rules, and building codes during the planning stage. Candidates are tested on how to integrate multiple regulatory requirements into a project's design effectively.
---------	---

>> Hot Project-Planning-Design Questions <<

Project-Planning-Design Exam Study Guide & Project-Planning-Design PDF prep material & Project-Planning-Design Exam Training Test

All in all, our test-orientated high-quality Project-Planning-Design exam questions would be the best choice for you, we sincerely hope all of our candidates can pass Project-Planning-Design exam, and enjoy the tremendous benefits of our Project-Planning-Design prep guide. Helping candidates to pass the Project-Planning-Design Exam has always been a virtue in our company's culture, and you can connect with us through email at the process of purchasing and using, we would reply you as fast as we can.

NCARB ARE 5.0 Project Planning & Design (PPD) Sample Questions (Q96-Q101):

NEW QUESTION # 96

A site has been engineered with a 1:20 grade.

Which of the following sidewalk designs would be the most cost-effective way to get from the top to the bottom and still be in compliance with the accessibility standards?

- A. Switchback ramps at 1:12 with a handrail
- B. Cutting diagonally across the slope at 1:10 with a handrail
- C. Cutting diagonally across the slope at 1:12 with no handrail
- D. At the same grade as the slope with no handrail

Answer: C

Explanation:

Comprehensive and Detailed Explanation From Exact Extract:

A 1:20 slope means a 5% grade (1 vertical unit per 20 horizontal units), which is slightly steeper than the ideal maximum slope for accessible ramps.

* Option C: Cutting diagonally across the slope at 1:12 (~8.33%) slope without a handrail is the most cost-effective design that still complies with accessibility standards. According to the Americans with Disabilities Act (ADA) and ICC A117.1, the maximum slope for an accessible ramp is 1:12. Handrails are required on ramps with a rise greater than 6 inches (150 mm). If the rise is less than 6 inches, handrails are not required.

Because the diagonal cut reduces the slope to 1:12 and the total rise is likely less than 6 inches given the gentle 1:20 original slope, handrails are not mandatory, making this solution economical and code compliant.

* Option A: Switchback ramps at 1:12 with handrails are compliant but more expensive due to increased construction complexity and space requirements.

* Option B: A 1:10 slope (10%) exceeds the maximum allowed slope for accessible ramps and requires handrails, thus non-compliant.

* Option D: Following the existing 1:20 slope without modification does not provide the maximum accessibility slope and may be acceptable but might not comply with certain stricter local codes for ramps.

Therefore, Option C balances accessibility, cost, and compliance optimally.

References:

ARE 5.0 Project Planning & Design Content Outline: Environmental Conditions and Context - Site Accessibility and Grading ADA Standards for Accessible Design (2010) ICC A117.1 Accessibility Standards The Architect's Handbook of Professional Practice, 15th Edition, Chapter 7: Site Planning and Accessibility

NEW QUESTION # 97

□ Refer to the exhibit (graph of moving walkway speed vs. nominal passengers per hour).

Based on the graphic shown, which of the following moving walkway speeds will deliver 4,500 passengers per hour utilizing a single lane?

- A. 150 ft per minute
- B. 130 ft per minute
- C. 110 ft per minute
- D. 170 ft per minute

Answer: A

Explanation:

The graph plots moving walkway speeds (feet per minute) on the horizontal axis against the nominal number of passengers per hour on the vertical axis. The curve labeled "Single Lane (90 cm tread width)" shows the passenger capacity for different speeds of a single moving walkway lane.

* For a nominal passenger flow of 4,500 passengers per hour on a single lane, trace horizontally from 4,500 on the vertical axis to intersect the single lane curve.

* The intersection corresponds approximately to a speed of 150 feet per minute (fpm).

* Speeds lower than 150 fpm (e.g., 110 or 130 fpm) correspond to lower passenger capacities (below 4,500), while 170 fpm exceeds 4,500 capacity.

This data is important for architects and planners to size and specify moving walkways in transit terminals, airports, or large public buildings to maintain efficient flow and minimize congestion.

According to NCARB's ARE Project Planning & Design guidelines, understanding capacity and circulation rates for building systems such as moving walkways is essential for designing efficient pedestrian movement and circulation within complex buildings.

References:

ARE 5.0 Project Planning & Design Content Outline: Environmental Conditions and Context - Circulation and Transit Systems
Black Spectacles ARE Study Materials: Moving Walkways and Passenger Flow Rates The Architect's Handbook of Professional Practice, 15th Edition, Chapter 7: Circulation and Accessibility

NEW QUESTION # 98

Which strategy enhances passive solar residential design in the northern hemisphere?

- A. Reducing heat storage capacity
- B. Eliminating insulated glazing along the northern walls
- C. Installing an electric baseboard heating system
- D. Locating deciduous trees along the south side of the house

Answer: D

Explanation:

Comprehensive and Detailed Explanation From Exact Extract:

Passive solar design in the northern hemisphere relies on maximizing solar gain during the winter while minimizing overheating during summer.

Deciduous trees located on the south side provide shade during the summer (when they have leaves), reducing cooling loads, and allow sunlight to penetrate in the winter after leaf fall, enhancing solar heat gain. This seasonal shading improves comfort and energy efficiency.

Eliminating insulated glazing on the north walls (B) increases heat loss, which is undesirable in cold climates.

Reducing heat storage capacity (C) lowers the building's thermal mass, decreasing its ability to moderate temperature swings, which is counterproductive.

Installing electric baseboard heating (D) is a mechanical solution and does not enhance passive solar design.

Therefore, option A is the best strategy consistent with passive solar principles.

References:

ARE 5.0 PPD - Environmental Conditions and Context, Passive Solar Design The Architect's Handbook of Professional Practice, 15th Edition - Sustainable Design Strategies

NEW QUESTION # 99

During design development of a new motel, the owner receives a cost estimate which was higher than what they had budgeted for. The project descriptions are as follows:

- * Number of units: Twenty
- * Construction type: V-B
- * Number of stories: Two
- * Structural system: Light wood frame
- * Mechanical system: Central air system

The client wants the architect to reduce the initial construction cost without sacrificing the potential return on investment.

- A. Change the scope to an eighteen-unit development.
- B. Change the number of stories to three.
- **C. Change the central air system to individual through-the-wall units at each room**
- D. Change the structural system to a precast concrete system

Answer: C

Explanation:

Comprehensive and Detailed Explanation From Exact Extract:

Switching from a centralized HVAC system to individual through-the-wall units (PTACs) significantly reduces initial construction and mechanical costs by eliminating the need for extensive ductwork and mechanical rooms.

Increasing stories (A) increases structural and construction costs.

Reducing units (C) reduces revenue potential.

Precast concrete system (D) is typically more expensive than light wood framing.

Thus, individual room units save cost without reducing revenue potential.

References:

ARE 5.0 PPD - Project Costs and Budgeting

The Architect's Handbook of Professional Practice, 15th Edition - Mechanical Systems and Cost Control

NEW QUESTION # 100

A multistory warehouse is to be converted into a high-tech office building. The owners propose a variety of services and flexibility to tenants, including cable/internet, fiber optic communications, dish/satellite, and security systems.

In order to accommodate this broad array of electronic and communications services, the architect should recommend which of the following electrical and communications distribution systems?

- A. Flat cable wiring system
- B. Poke-through system
- C. Cellular deck system
- **D. Raised access floor system**

Answer: D

Explanation:

Comprehensive and Detailed Explanation From Exact Extract:

A raised access floor system provides a flexible, accessible space beneath the finished floor for routing power, data, telecommunications, and security cables. It facilitates easy reconfiguration and tenant fit-out modifications without major disruption.

Poke-through systems (A) provide limited point access for power/data and are less flexible for extensive rewiring.

Cellular deck systems (B) are structural components, not distribution systems.

Flat cable wiring (D) is a wiring method but does not provide the physical infrastructure for flexibility.

References:

ARE 5.0 PPD - Building Systems and Assemblies, Electrical and Communications Systems The Architect's Handbook of Professional Practice, 15th Edition - Data and Power Distribution

NEW QUESTION # 101

.....

Our Project-Planning-Design practice dumps is high quality product revised by hundreds of experts according to the changes in the syllabus and the latest developments in theory and practice, it is focused and well-targeted, so that each student can complete the learning of important content in the shortest time. With Project-Planning-Design training prep, you only need to spend 20 to 30 hours of practice before you take the Project-Planning-Design exam.

Pass Project-Planning-Design Guaranteed: https://www.braindumpsqa.com/Project-Planning-Design_braindumps.html

BONUS!!! Download part of Braindumpsqa Project-Planning-Design dumps for free: <https://drive.google.com/open?id=1h5YSt0fR11F5NtDtawUPeI4jL2xI9DD>