DEA-CO2E D e 51k | RsE Z DEA-CO2E 1R E
FX¥APMRE | "M A ZA L — F DSnowPro Advanced:
Data Engineer (DEA-C02)&#3

Certification

SNOWPRO®
CERTIFICATION

DATA ENGINEER

Lol

ROVANCED

BONUS! ! ! It-Passports DEA-C02X > 7" D —#B % B TX 7 > o — F: hitpsv/drive.google.com/open?
id=1QvkQhBob30oHSqaQranyXwXrPo5g8g8cG

T BRBAN & DV D THRBEL 7212 9 A0 W T3, Snowflake DEA-CO2RE B4 & B % It-Passports T & EL#: 12
BROXY o= F2RELAILTVWET. BHOEBRE, 4 F— 41 &% 1210 & & SO H O Snowflake
DEA-CO2MI RS R 2 /B L THREEL £ +. Snowflake DEA-CO2RIFEE OB E c ArER H I L O
BEEEROBHEWEDE 2T ET.

It-Passportsid Snowflake® DEA-CO2:8 5% O 5 %7 D B % 1Rt 4 2 DHEFIM % 4 1 » T ¥ . Snowflake® DEA-CO2F]
BHEIGDEA-C2 BT 2B E B LA YR EN £ . Fh/c b D Snowllake ® DEA-CO2REBE 2 ) D IF B DR R
b4 IBIRT T, t-Passportsid EORE A RO RORHTERTE 2. ZEEMBEALBELH-TH, DB 0
GKEORBERBMLI6, b EERET IO EMFIAEVLL £ 7,

>>DEA-CR2EMHKEE 7 £ X b <<

100% S EDDEA-C2EBKEE 7 ¥ A b & EEK L DEA-C2E R

Lk, TRTOZEBRENARBRCBHECAKRTE 2L ) CDEA-CBRFTOMEEM s HHET 2 LCHESL T
B0, 10U LEOHEFEOBICRKELZREs LT Y. BREBBREEF CMESF V2o @)% DEA-CO2
REEAA Mg NX—%BRT 245y b A 7D & 5 LDEA-CO2RBIC BT 27008 aEEHE LY £
¥. 2L T. DEA-CO2iREE# 1 FOEDEWDEA-CO2%EE # A Fid. U U LOBFOERRIC L > TAEH SN
TWw3i». DEA-COREBRET S bRt lct>TIELWLDTT.

Snowflake SnowPro Advanced: Data Engineer (DEA-C02) 52 78 DEA-C02 &4
BRI R (Q348-Q353):

M #348

You are tasked with designing a data pipeline that ingests JSON data from an external stage (AWS S3). The JSON files contain
records for various product types, each having a different set of attributes. Some product types might have attributes that are not
present in other types. You want to create a single Snowflake table that can accommodate all product types without defining a rigid
schema upfront and also be queryable efficiently. Which of the following approaches, combining external tables, schema evolution
and querying, would be MOST effective? (Choose two)

¢ A Create a single external table with a VARIANT colunn to store the entire JSON record for each product. Use
LATERAL FLATTEN to extract specific attributes during querying,

¢ B. Create a single external table witha VARIANT column and use the "VALIDATE function to identify and handle scherma
inconsistencies during data loading.

e C. Create a separate external table for each product type, defining the schema for each table based on the attributes present


https://drive.google.com/open?id=1QvkQhBob3oHSqaQranyXwXrPo5g8g8cG
https://www.goshiken.com/Snowflake/DEA-C02-free-shiken.html
https://www.passtest.jp/Snowflake/DEA-C02-shiken.html
https://www.it-passports.com/DEA-C02.html
https://www.it-passports.com/DEA-C02.html

in the corresponding JSON files.

¢ D. Create a stored procedure that dynamically infers the schema from the JSON files and creates a new Snowflake table
based on the inferred schema.

¢ E. Load all the data into a raw Snowflake internal table. Use dynamic SQL to infer distinct product types and create views on
top of the raw table for each product type.

Eﬁ: A\ B

A -

Options B and D provide the most effective solution for handling diverse JSON data with scherma evolution and efficient querying.
Option B allows for storing the entire JSON record ina VARIANT column, enabling flexibility in accommodating varying product
attributes. LATERAL FLATTEN allows extracting specific attributes needed during querying, Option D further enhances this by
using the VALIDATE function (part of COPY INTO when loading into a table using COPY INTO FROM (@stage), even though in
this case we are using an external table, to identify schema inconsistencies and handle them appropriately. Option A is not scalable,
Option C requires a lot of code and is difficult to maintain and option E, requires too much SQL to execute, making it expensive.

B #349

You have a Snowpark Python application that performs complex calculations on a large dataset stored in Snowflake. The
application is currently running slowly. After profiling, you've identified that the UDFs you're using are the bottleneck. These UDFs
perform custom data transformations using a third-party Python library which has a significant initialization overhead. Which of the
following strategies would be MOST effective to optimize performance, mnimizing both runtime and resource consumption?

e A Implement UDF caching at the Snowflake level by setting the "VOLATILE property to 'IMMUTABLE or 'STABLE (if
appropriate), and leverage the Snowflake query result cache.

¢ B. Increase the size of the Snowflake warehouse being used for the Snowpark workload. This will provide more CPU and
IMeMOTy TeSOurces.

e C. Convert the Snowpark Python application to a Snowpark Java application as Java generally offers better performance
than Python.

e D. Use Snowpark's 'pandas_udfwith 'vectorized=True' and pre-initialize the third-party library within the UDF's execution
context using a closure or similar technique for reuse across batches.

¢ E. Rewrite the UDFs in SQL using Snowflake's built-in functions to avoid the overhead of Python execution. Ifthe library's
functions aren't available, consider creating external functions using a cloud provider's serverless compute service.

IEf#: D

fi .-

Option C is the most effective. 'pandas_udfwith 'vectorized=True' allows processing data in batches using pandas DataFrames,
significantly reducing the overhead of invoking the UDF for each row. Pre-initializing the library within the UDF's closure avoids
repeated initialization. Increasing warehouse size (A) might help but is not as targeted. UDF caching (B) only helps if the inputs are
identical and doesn't address the nitialization overhead. Rewriting in SQL (D) might not be feasible if the third-party library is
essential. Converting to Java (E) could help, but optimizing the Python code first is generally a better starting point.

H R #350

You are tasked with creating a JavaScript stored procedure in Snowflake to performa complex data masking operation on sensitive
data within a table. The masking logic involves applying different masking rules based on the data type and the column name. Which
approach would be the MOST secure and maintainable for storing and managing these masking rules? Assume performance is not
your primary concern but code reuse and maintainability is the most important thing,

e A. Using external stages and pulling the masking rules from a configuration file during stored procedure execution.

e B. Defining the masking rules as JSON objects within the stored procedure code.

e (. Storing masking logic in Javascript UDFs and calling these UDFs dynamically within the stored procedure based on
column names and datatype

e D. Storing the masking rules in a separate Snowflake table and querying them within the stored procedure.

e E. Hardcoding the masking rules directly within the JavaScript stored procedure.

EfE: C. D
fiR e«

Options B and E are the most secure and maintainable. Storing the masking rules in a separate Snowflake table allows for easy



modification and version control without altering the stored procedure code. Javascript UDFs make the logic reusable, mamntainable
and dynamic. Hardcoding the rules (A) makes maintenance difficult. JSON objects within code (C) are an improvement but are still
embedded within the code. Using external stages (D) introduces dependencies and potential security risks if not managed carefully.

P #351

You are tasked with loading a large CSV file (1 T B) into Snowflake. The file contains data for the past 5 years, partitioned by year
in the filename (e.g., 'data 2019.csv', 'data 2020.csV, etc.). You need to minimize data loading time and ensure data quality. You
have a Snowflake virtual warehouse "XSMALL' and a stage 'my_stage'. Which of the following strategies would be MOST
effective?

¢ A Increase the virtual warehouse size to '"LARGE, use a single 'COPY command to load all files with the ERROR =
CONTINUE option. Implement data quality checks post-load using SQL queries.

¢ B. Load each file individually using a separate 'COPY' command with 'VALIDATION MODE = RETURN ERRORS to
check for data quality issues before loading the next file. Use the "XSMALL' warehouse for all loads.

¢ C. Increase the virtual warehouse size to 'LARGE, use a single 'COPY command to load all files with the ERROR = ABORT
STATEMENT option. Create a file format with "SKIP HEADER = 1' and "TRIM SPACE = TRUE.

e D. Use Snowpipe with auto-ingest enabled. Ensure your cloud storage event notifications are properly configured. Create a
file format with 'SKIP HEADER = 1' and "TRIM SPACE = TRUE Leave the warchouse as 'XSMALL' to control costs.

¢ E. Create multiple named file formats each with a unique 'SKIP HEADER value matching the number of header rows in each
file. Load using a single 'COPY' command referencing each file format specifically.

Ef: A

A -

Option B 1s the most effective. Increasing the warehouse size to 'LARGE allows for parallel processing and faster loading. ERROR
= CONTINUE ensures that the load process doesn't halt on minor errors, and post-load data quality checks are more efficient. A
allows validation during load which slows down the process significantly. C will halt the entire process upon encountering an error. D
is not suitable because it will be throttled by the XSMALL warehouse, which is not good for nitial data loading. E isn't realistic as
files should have a standard headen

H R #352

You are tasked with building a data pipeline using Snowpark to process sensor data from IoT devices. The data arrives in near real-
time as JSON payloads, and you need to transform and load it nto a Snowflake table named 'SENSOR DATA'. The
transformation logic nvolves extracting specific fields, converting data types, and filtering out records based on a timestamp.
Consider performance optimization for large data volumes. Which of the following approaches, in combination, would be MOST
efficient for this scenario?

¢ A. Employing Snowpipe to ingest the raw JSON data into a VARIANT column in a staging table, followed by a Snowpark
DataFrame operation using 'functions.get' to extract and transform the data, and finally loading into 'SENSOR DATA'

¢ B. Creating an external table pointing to the JSON data in cloud storage and using Snowpark DataFrames to read the
external table, apply transformations, and load the result into 'SENSOR DATA'.

e C. Using a Snowpark Python UDF to parse JSON and perform transformations, loading the result into a temporary table,
and then merging into 'SENSOR DATA'".

e D. Using a stored procedure written in Java to parse the JSON data and insert directly into the "SENSOR DATA' table.

e E. Leveraging Snowflake's native JSON parsing functions within a SQL transformation step implemented as a Snowpark
DataFrame operation, combined with a Snowpipe for initial data ingestion into a staging table.

IEf@#: A\ E

AR :

Options B and E, used in combination, offer the best performance. Snowpipe provides efficient near real-time ingestion into a
VARIANT column. Then, using Snowpark DataFrames with Snowflake's native JSON parsing functions like 'fimctions. get' and
"finctions.to_timestamp' allows for vectorized operations within Snowflake's engine, minimizing data movement and maximizing
processing speed. This combination avoids the overhead of UDFs (Option A) or external tables (Option C), and leverages the
strengths of both Snowpipe and Snowpark. A Java stored procedure (Option D) would likely be less performant than leveraging
Snowpark's DataFrame APL



B #353

Hglix A > X—2% v b TSnowllake® DEA-CO25ZRERRBR D SR E R & BE DR Z BB TX 7> —FL T
{fZ&Ww, 25 L 17bd%fzidIt-PassportsS IR L 1B b o L BEHH Y & 3. F { It-PassportsD I RELE
FEDFIANREL &I,

DEA-C024 #% 2 : https7//www.it-passports.comyDEA-C02. html

DEA-CO2 b L —=> 7 BK DPDF/N— 3 ~: SnowPro Advanced: Data Engineer (DEA-CO2)i i & 23 4« HZ %
T, BRIERESR—PL TR0, HKTEHRIL THET 32 &43T & &7, It-Passports DITEPIR I £ <
DZERAE B b F L v Snowllake DDEA-CO2RBE # Rt T 2 e o . HEBMOEME 2R T 2010, —
AERACTARY £ . B4 DODEA-CO2Y 7 MREEEE 2R TE N Z L DITEEEZL T3 NY I EHAK
Snowflake DEA-CO2& #4385 # BUf5 & ¢ 4. Snowflake DEA-CO2BARIEE 7 + X b B AEL WikFw . fif-
5% OMECHEEL & 7. Snowflake DEA-CO2EHZEE 7 ¥ A F ChE B AN 2 WRBEDER S A CAEH
IhtzZl&T9d,

HBAFIEDHDDBENKBEARHZAERTE VW ETDT—42DEA-CO27 A MEEE2IZE. FWHBVfTET
—BBIEEERBDIETLDDEMESATHE. LodhH. broefToThE I ¥, DEA-CO2 L —
=7 BRI DPDF/A—¥ 3 >: SnowPro Advanced: Data Engineer (DEA-C02) DEA-C027 R hEJBEE FiA P 7 < .
H2ed<. BRIERE S R— L TR0, KTHRIL CHET 2N TEET,

#3E 3 3 Snowflake DEA-C02 | B O DEA-CO2&#EE 7 + R + 35k |
A5k D #4575 SnowPro Advanced: Data Engineer (DEA-C02)&

It-Passports D ITH IR i3 £ < D ZERA 12 B & 7 L W Snowflake D DEA-CO2RIE&E # Rt 4 2 2. EBHMOE
s T a0, —EBHCTERY £ 4. BHEODEA-C2Y 7 MEFMELEE»» LR TLVZLDITHEE %
L T 3 A% i3 JEFH 1 Snowflake DEA-CO2E IS BE# MBS & £ 7,

AN T, Bl b3 2 { ODEA-C2IEw HEL 4. ChEB AV 2 wZBREDOR S AW
ShtzeTt.

o FHENK L DEA-C2EMKEE 7 % R b - &1 X 4 —XDEA-CO2& 1 & | EEH & DEA-C027 2 b R4
SnowPro Advanced: Data Engineer (DEA-C02) [ #8& ¥ 3 72 i} T= www.mogiexamcom <> 5 » DEA-C02 <% f&
¥l T K v > u— FDEA-CO2BIE & 4}

e Snowflake DEA-C02 Exam | DEA-CO2& #1527 ¥ A b - L AKREDDEA-CO2RE % ZEBL T & W [
[ www.goshikencom]# A 7JL T> DEA-CO2 <2 #E L BRITX V> o — FL T < £ & LWDEA-CO25:H1 %
R

* DEA-CO2&#% R BRaR (1 DEA-COE SRR BR S HT AR [1 DEA-CO2 H ARE R B 5k (1 4 1 b
www.xhs1991.com”C = DEA-C02 [fERESE # X 7 > o — FDEA-CO28&#T %« R RE£E

e DEA-CO2BHiE % ¥} (1 DEA-CO2 H A<3E AR B b 587% () DEA-CO2R & [ [ DEA-CO2 1% Rl TK v~
o — N w www.goshiken.com [17 = 74 4 b+ % NJ19 % 121 DEA-CO2H 5 54 B 5 B hik

o DEA-CO2&#&4hBEak ) DEA-CO25% B4 5% [ DEA-CO2MIF & RIEE 0 v = 74 4 b (
www.mogiexamcom ) 2>5  DEA-C02 ) #B v THEL . BB TX Y > o—FL T< 7 & WDEA-CO27 A
b BB

o DEA-C02% 3 #5 3 [ DEA-CO2 & #& 1A B #k [ DEA-CO02 H ARERR A B f1557%: [ = www.goshiken.com &2
BEIL . “DEA-CO2"4BEL THEMTK V> o—FL T< £ 8 LWDEA-CO2f5E & R

e DEA-C2EHEE 7 % A b | RHE 5 L LWAKZE D DEA-C02: SnowPro Advanced: Data Engineer (DEA-C02) |
DEA-CO2&#% % [ -8 DEA-C02 (13- [1% Rl TK 7 > o — F» www.passtestjp«7 = 79 A1 h# ANNT 212
(Y DEA-C027 A b & ¥

o DEA-CO2[EEf] =) DEA-CO2& #4&Bi#% [ DEA-CO2B ¥ &KL [ [ DEA-CO2 (1% BRI TCHX v > u—F
-o- www.goshiken.com [ 8- 17 = 74 4 b % N J1§ 3 72 DEA-CO2Z B /7 vk

o DEA-CO25158% %} (1 DEA-CO27 A b RRE4E (1 DEA-C027 A b &k} [1[ DEA-CO2 |0 #R BRI RE 1 {
www.shikenpass.com } ¢ #&EHEC {5 H DEA-CO0238 € &%

o SEEE-RWE S5 L WDEA-CO2EIEEE 7 ¥ R bl B-3A5k D ¥4 77 DEA-CO2 &4 % (1 www.goshiken.com
Y OFBL > o—F (DEA-C02) X—Y 5B & ¥ + DEA-CO25 ¥ & M4

e DEA-C027 % b [E£ [1 DEA-CO25 %t % B4 (1 DEA-CO2E#&RBRER . Open Web# £ | =
www.passtest.jp [#%Z (| DEA-C02 (kX 7 > o — FDEA-CO2 H 4 55 A B 1% 3R

e hindufy.me, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, fortunetelleroracle.com, www.stes.tyc.edu.tw, digilearn.co.zw,
www.stes.tyc.edu.tw, stepupbusinessschool.com, hackingworlds.com, ncon.edu.sa, Disposable vapes

BONUS! ! ! It-Passports DEA-C02X > 7" D — & # B T X 7 > v — I httpsv//drive.google.convopen?


https://www.goshiken.com/Snowflake/DEA-C02-mondaishu.html
https://www.it-passports.com/DEA-C02.html
https://www.it-passports.com/DEA-C02.html
https://www.xhs1991.com/DEA-C02.html
https://www.it-passports.com/DEA-C02.html
https://www.mogiexam.com/DEA-C02-exam.html
https://www.pdc.edu/?URL=https%253a%252f%252fwww.it-passports.com%252fDEA-C02.html
https://www.xhs1991.com/DEA-C02.html
https://www.northwestu.edu/?URL=https%253a%252f%252fwww.it-passports.com%252fDEA-C02.html
https://www.mogiexam.com/DEA-C02-exam.html
https://bbs.pku.edu.cn/v2/jump-to.php?url=https%253a%252f%252fwww.it-passports.com%252fDEA-C02.html
https://www.passtest.jp/DEA-C02-mondaishuu.html
http://atomicladies.com/?s=DEA-C02%25e5%2595%258f%25e9%25a1%258c%25e4%25be%258b+%25e2%259e%25a1%25ef%25b8%258f+DEA-C02%25e5%2590%2588%25e6%25a0%25bc%25e4%25bd%2593%25e9%25a8%2593%25e8%25ab%2587+%25f0%259f%2598%258b+DEA-C02%25e6%259c%2580%25e6%2596%25b0%25e8%25b3%2587%25e6%2596%2599+%25f0%259f%2598%25b8+%25e2%2596%259b+DEA-C02+%25e2%2596%259f%25e3%2582%2592%25e7%2584%25a1%25e6%2596%2599%25e3%2581%25a7%25e3%2583%2580%25e3%2582%25a6%25e3%2583%25b3%25e3%2583%25ad%25e3%2583%25bc%25e3%2583%2589%25e2%2598%2580+www.goshiken.com+%25ef%25b8%258f%25e2%2598%2580%25ef%25b8%258f%25e3%2582%25a6%25e3%2582%25a7%25e3%2583%2596%25e3%2582%25b5%25e3%2582%25a4%25e3%2583%2588%25e3%2582%2592%25e5%2585%25a5%25e5%258a%259b%25e3%2581%2599%25e3%2582%258b%25e3%2581%25a0%25e3%2581%2591DEA-C02%25e5%258f%2597%25e9%25a8%2593%25e6%2596%25b9%25e6%25b3%2595
https://www.shikenpass.com/DEA-C02-shiken.html
http://www.corricastrovillari.it/?s=%25e5%25ae%258c%25e7%2592%25a7-%25e7%25b4%25a0%25e6%2599%25b4%25e3%2582%2589%25e3%2581%2597%25e3%2581%2584DEA-C02%25e8%25b3%2587%25e6%25a0%25bc%25e5%25be%25a9%25e7%25bf%2592%25e3%2583%2586%25e3%2582%25ad%25e3%2582%25b9%25e3%2583%2588%25e8%25a9%25a6%25e9%25a8%2593-%25e8%25a9%25a6%25e9%25a8%2593%25e3%2581%25ae%25e6%25ba%2596%25e5%2582%2599%25e6%2596%25b9%25e6%25b3%2595DEA-C02%25e5%2590%2588%25e6%25a0%25bc%25e7%258e%2587+%25f0%259f%259f%25aa+%25e3%2580%258a+www.goshiken.com+%25e3%2580%258b%25e3%2581%25ae%25e7%2584%25a1%25e6%2596%2599%25e3%2583%2580%25e3%2582%25a6%25e3%2583%25b3%25e3%2583%25ad%25e3%2583%25bc%25e3%2583%2589%25ef%25bc%2588+DEA-C02+%25ef%25bc%2589%25e3%2583%259a%25e3%2583%25bc%25e3%2582%25b8%25e3%2581%258c%25e9%2596%258b%25e3%2581%258d%25e3%2581%25be%25e3%2581%2599DEA-C02%25e6%259c%2580%25e6%2596%25b0%25e3%2581%25aa%25e5%2595%258f%25e9%25a1%258c%25e9%259b%2586
https://www.passtest.jp/DEA-C02-mondaishuu.html
https://hindufy.me/profile/gregkel535
http://www.stes.tyc.edu.tw/xoops/modules/profile/userinfo.php?uid=3853622
http://www.stes.tyc.edu.tw/xoops/modules/profile/userinfo.php?uid=3854791
https://fortunetelleroracle.com/news/Reliable%20NSE4_FGT_AD-7.6%20Mock%20Test,%20Exam%20NSE4_FGT_AD-7.6%20Forum-1242461
http://www.stes.tyc.edu.tw/xoops/modules/profile/userinfo.php?uid=3854908
http://digilearn.co.zw/profile/carleva133
http://www.stes.tyc.edu.tw/xoops/modules/profile/userinfo.php?uid=3854491
https://stepupbusinessschool.com/profile/dylanan926
https://hackingworlds.com/profile/eliward185
https://ncon.edu.sa/profile/steveki276
https://frvape.com

id=1QvkQhBob3oHSqaQranyXwXrPo5g828cG


https://drive.google.com/open?id=1QvkQhBob3oHSqaQranyXwXrPo5g8g8cG

