

FAAA_005関連問題資料、FAAA_005試験参考書

Download Pure Storage FAAA_005 Dumps for Best Preparation

1. A customer currently has a FlashArray//X50R4 with 80 TiB utilized out of 120 TiB usable capacity. The customer needs to add a 46 TiB SQL workload with an expected DRR of 3.85 to this system.

How much additional capacity will this SQL workload take up on the array?

- A. 177 TiB
- B. 46 TiB
- C. 28 TiB
- D. 12 TiB

Answer: A

Explanation:

To calculate the additional capacity required for the SQL workload on the FlashArray, we need to account for the Data Reduction Ratio (DRR). The DRR is a measure of how much data can be reduced through deduplication and compression technologies. In this case, the expected DRR for the SQL workload is 3.85.

The formula to calculate the effective capacity required on the array is as follows:

$$\text{Effective Capacity Required} = \frac{\text{Logical Data Size}}{\text{DRR}}$$

Here:

Logical Data Size = 46 TiB (the size of the SQL workload before reduction)

DRR = 3.85 (expected data reduction ratio)

Substituting the values into the formula:

$$\text{Effective Capacity Required} = \frac{46}{3.85} \approx 11.95 \text{ TiB}$$

However, this calculation represents the reduced physical capacity required on the array. Since the question asks for the total logical data size that will be stored on the array (including the overhead of metadata and other factors), we must consider the full logical size of the workload, which is $46 \text{ TiB} \times \text{DRR} = 177 \text{ TiB}$.

Thus, the SQL workload will take up 177 TiB of logical space on the array.

Key Points:

Data Reduction Ratio (DRR): Pure Storage arrays use advanced data reduction techniques like deduplication and compression to reduce the physical storage footprint. However, the logical size of the workload remains unchanged.

Logical vs. Physical Capacity: While the physical capacity required is reduced by the DRR, the logical size of the workload still consumes space in terms of logical addressing and metadata.

Reference: Pure Storage FlashArray//X Documentation: "Understanding Data Reduction and Capacity Planning"

Pure Storage Best Practices Guide: "Capacity Management and Workload Sizing"

Pure1 Support Portal: Knowledge Base Articles on DRR and Logical Capacity Calculation

2. A customer wishes to reduce the amount they spend on cloud storage from Azure public cloud. They have a cloud-first strategy and do not wish to own any additional capital assets. The applications data mainly consists of 100 TB of Database data.

Which product satisfies this requirement?

- A. Evergreen//Flex
- B. Evergreen//Forever

2 / 9

ちなみに、ShikenPASS FAAA_005の一部をクラウドストレージからダウンロードできます：https://drive.google.com/open?id=1a_Khl9_paBCXnj5xAv9DvNPkAKbHHAJo

Pure StorageのFAAA_005の実際のテストのオンラインバージョンを使用すると非常に便利です。オンライン版の利便性を実感すれば、多くの問題の解決に役立ちます。ShikenPASS教材のFAAA_005オンライン版の利便性は、主に次の側面に反映されています。一方で、オンライン版は機器に限定されません。FAAA_005テスト準備のオンラインバージョンは、電話、コンピューターなどを含むすべての電子機器に適用されます。一方、FAAA_005学習資料のオンライン版を使用することに決めた場合、WLANネットワークがないことを心配する必要はありません。

ユーザーエクスペリエンスの向上を常に目指しています。FAAA_005テストガイドを購入する前にPDFバージョンのデモをダウンロードして、その内容を簡単に見て、FAAA_005試験を理解してください。FAAA_005の実際の質問を知ったら、購入するかどうかを決めることができます。プロセスは静かでシンプルです。あなたがする必要があるのは、当社のウェブサイトにアクセスして無料のデモをダウンロードすることです。これにより多くの時間を節約でき、FAAA_005試験問題の合格率は98%以上なので、FAAA_005テストガイドで満足する可能性が高くなります。

>> FAAA_005関連問題資料 <<

FAAA_005試験参考書、FAAA_005復習対策

従来の見解では、練習資料は、実際の試験に現れる有用な知識を蓄積するために、それらに多くの時間を割く必要があります。 ShikenPASSただし、Pure Storage FlashArray Architect Associateの学習に関する質問はPure Storageその方法ではありません。以前のFAAA_005試験受験者のデータによると、合格率は最大98~100%です。最小限の時間と費用で試験に合格するのに役立つ十分なコンテンツがあります。FAAA_005 Pure Storage FlashArray Architect Associate準備資料の最新コンテンツで学習できるように、当社の専門家が毎日更新状況を確認し、彼らの勤勉な仕事と専門的な態度が練習資料に高品質をもたらします。 Pure Storage FlashArray Architect Associateトレーニングエンジンの初心者である場合は、疑わしいかもしれません、参照用に無料のデモが提供されています。

Pure Storage FlashArray Architect Associate 認定 FAAA_005 試験問題 (Q39-Q44):

質問 #39

Refer to the exhibit.

Which FlashArray controller(s) does the exhibit show?

- A. Top: Primary, Bottom: Secondary
- B. Top: CTO, Bottom: CT1
- C. Top: CT1, Bottom: CT2

正解: C

解説:

Exhibit controllers of a Pure Storage FlashArray, specifically labeled as CT1 (top) and CT2 (bottom). This labeling is consistent with Pure Storage's naming convention for its controllers.

Why This Matters:

Controller Identification:

Pure Storage FlashArray controllers are typically labeled as CT1 and CT2 to distinguish between the two controllers in an active/active architecture.

Both controllers work together to provide high availability and redundancy, ensuring seamless operation even if one controller is offline for maintenance or upgrades.

Active/Active Architecture:

In an active/active design, both controllers share the workload equally. If one controller is taken offline, the other seamlessly handles all I/O operations without impacting performance or availability.

Why Not the Other Options?

B). Top: Primary, Bottom: Secondary:

Pure Storage does not use "Primary" and "Secondary" labels for its controllers. Instead, it uses specific identifiers like CT1 and CT2 to refer to the controllers.

C). Top: CTO, Bottom: CT1:

The label "CTO" is not a valid designation for FlashArray controllers. Pure Storage consistently uses CT1 and CT2 to identify the controllers.

Key Points:

Controller Labels: Pure Storage FlashArray controllers are labeled as CT1 and CT2.

Active/Active Design: Both controllers operate simultaneously to ensure high availability and performance.

Redundancy: The dual-controller architecture provides fault tolerance and minimizes downtime during maintenance or failures.

Reference: Pure Storage FlashArray Documentation: "Understanding FlashArray Controller Architecture" Pure Storage Knowledge Base: "Identifying FlashArray Controllers" Pure Storage Whitepaper: "Active/Active Controller Design for High Availability"

質問 #40

Refer to the exhibit.

A customer is experiencing latency in the VMware environment connected to this array.

What should the SE recommend?

- A. Check the ESXi host
- B. Add network cards to alleviate network congestion
- C. Add DirectFlash Modules as the system is disk bound
- D. Upgrade the controllers

正解: A

解説:

The exhibit shows latency in the VMware environment connected to the FlashArray. When troubleshooting latency issues in a VMware environment, the first step is to identify whether the issue originates from the storage array, the network, or the ESXi host. In this case, the SE should recommend checking the ESXi host, as it is often the source of latency problems in VMware environments.

Why This Matters:

ESXi Host Issues:

The ESXi host could be experiencing resource contention (e.g., CPU, memory, or network bottlenecks) or misconfigurations (e.g., improper queue depth settings or multipathing policies).

High latency on the ESXi host can impact the performance of virtual machines and appear as storage latency, even if the FlashArray itself is functioning optimally.

Why Not the Other Options?

A). Add DirectFlash Modules as the system is disk bound:

Pure Storage FlashArray uses DirectFlash Modules, which are NVMe-based and provide extremely low latency. If the array were disk-bound, it would indicate a hardware limitation, but this is unlikely with FlashArray's architecture. The issue is more likely related to the ESXi host or network.

B). Upgrade the controllers:

Controller upgrades are typically unnecessary unless the array is nearing its performance limits. Since the exhibit does not indicate any signs of controller saturation, this is not the correct recommendation.

C). Add network cards to alleviate network congestion:

While network congestion can cause latency, the issue is more likely related to the ESXi host configuration. Adding network cards should only be considered after confirming network bottlenecks through diagnostics.

Key Points:

ESXi Host Diagnostics: Start by checking the ESXi host for resource contention, misconfigurations, or improper settings.

Storage Array Health: Verify that the FlashArray is not experiencing any performance issues (e.g., high queue depths or latency).

Network Analysis: Only after ruling out the ESXi host and storage array should network-related issues be investigated.

Reference: Pure Storage FlashArray Documentation: "Troubleshooting Latency in VMware Environments" VMware Best Practices

Guide: "Optimizing ESXi Host Performance" Pure Storage Knowledge Base: "Diagnosing and Resolving Latency Issues"

質問 #41

A customer has presented two workloads that need to be replicated. One is a highly transactional database workload and the other is a VM datastore with tier one applications.

The customer has the following requirements:

- * The database workload is highly reliant on storage performance. The VM datastore requires zero downtime.
- * The customer has advised the two FlashArrays will be 20 miles apart and they are worried that this could impact their internal SLAs.

What replication strategies should be advised for these workloads?

- A. ActiveCluster should be used for both workloads.
- B. ActiveCluster should be used for the VM workloads and ActiveDR for the database workload.

- C. ActiveDR should be used for both workloads.
- D. ActiveDR should be used for the VM workloads and ActiveCluster for the database workload.

正解: B

解説:

To address the customer's requirements, we need to evaluate the replication strategies offered by Pure Storage FlashArray, ActiveCluster and ActiveDR, and how they align with the specific needs of the two workloads.

Workload Analysis:

Transactional Database Workload:

This workload is highly reliant on storage performance. Any replication strategy must ensure minimal latency and high availability to avoid impacting transactional throughput and response times.

The database workload typically benefits from synchronous replication to maintain consistency and performance across sites.

VM Datastore (Tier 1 Applications):

This workload requires zero downtime, meaning it must remain accessible even in the event of a site failure. High availability and seamless failover are critical.

The VM datastore can tolerate some level of asynchronous replication as long as it does not compromise availability or recovery objectives.

Replication Strategies:

ActiveCluster:

ActiveCluster is a synchronous replication solution that provides active-active high availability across two FlashArrays. It ensures zero RPO (Recovery Point Objective) and zero RTO (Recovery Time Objective), making it ideal for workloads requiring continuous availability and zero downtime.

ActiveCluster is well-suited for the VM datastore workload because it guarantees seamless failover and high availability, meeting the zero-downtime requirement.

ActiveDR:

ActiveDR is an asynchronous replication solution designed for disaster recovery scenarios. It provides near-zero RPO (typically seconds to minutes) and allows for non-disruptive testing of failover scenarios.

ActiveDR is better suited for the transactional database workload because it minimizes the impact of latency over the 20-mile distance while still maintaining high performance and consistency.

Distance Consideration:

The 20-mile distance between the two FlashArrays introduces latency concerns. Synchronous replication (ActiveCluster) can handle this distance effectively for the VM datastore workload due to its tolerance for slightly higher latency. However, for the transactional database workload, the latency could degrade performance, making ActiveDR a better choice.

Final Recommendation:

Use ActiveCluster for the VM datastore workload to achieve zero downtime and high availability.

Use ActiveDR for the transactional database workload to balance performance and disaster recovery needs over the 20-mile distance.

Reference: Pure Storage ActiveCluster Documentation:

Explains the synchronous replication capabilities and use cases for ActiveCluster.

Pure Storage ActiveCluster

Pure Storage ActiveDR Documentation:

Details the asynchronous replication features and disaster recovery use cases for ActiveDR.

Pure Storage ActiveDR

Pure Storage Best Practices for Replication:

Provides guidance on selecting the appropriate replication strategy based on workload requirements and distance considerations.

Pure Storage Replication Best Practices

Pure Storage Architectural Guides:

Covers architectural considerations for deploying ActiveCluster and ActiveDR in multi-site environments.

Pure Storage Architectural Guides

This approach ensures that both workloads meet their respective SLAs while addressing the customer's concerns about distance and performance.

質問 # 42

What allows for array upgrades without any degradation in performance?

- A. Right-Size Guarantee
- B. Non-disruptive upgrades
- C. ActiveCluster
- D. Protection groups

正解: B

解説:

The feature that allows for array upgrades without any degradation in performance is non-disruptive upgrades.

Why This Matters:

Non-Disruptive Upgrades:

Pure Storage FlashArray supports rolling upgrades, enabling software updates (e.g., Purity//FA) and hardware upgrades (e.g., controllers) without interrupting operations.

During a controller upgrade, the active/active architecture ensures that one controller continues handling I/O operations while the other is upgraded, maintaining consistent performance.

Why Not the Other Options?

A). ActiveCluster:

ActiveCluster provides synchronous replication for high availability but does not directly relate to non-disruptive upgrades.

C). Right-Size Guarantee:

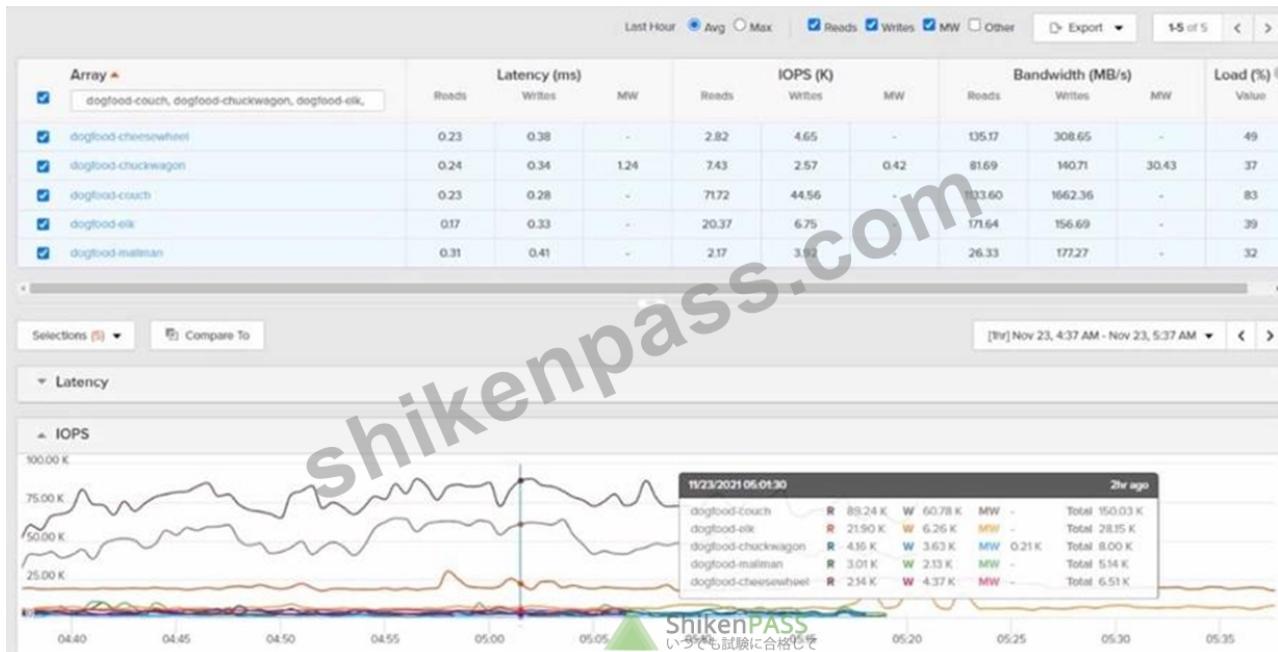
The Right-Size Guarantee ensures customers receive the expected effective capacity based on their workload's data reduction profile. It is unrelated to upgrades or performance.

D). Protection groups:

Protection groups are used for replication and snapshot management but do not impact the ability to perform non-disruptive upgrades.

Key Points:

Non-Disruptive Upgrades: Ensure seamless updates without impacting performance or availability.


Active/Active Architecture: Enables continuous I/O processing during upgrades.

Customer Experience: Minimizes downtime and disruption during maintenance or upgrades.

Reference: Pure Storage FlashArray Documentation: "Non-Disruptive Operations with FlashArray" Pure Storage Whitepaper: "Evergreen Architecture and Non-Disruptive Upgrades" Pure Storage Knowledge Base: "Performing Non-Disruptive Upgrades on FlashArray"

質問 #43

Refer to the exhibit.

Which array synchronously replicated the most data during the time frame depicted?

- A. dogfood-chuckwagon
- B. dogfood-cheesewheel**
- C. dogfood-couch
- D. dogfood-elk

正解: B

解説:

To determine which array synchronously replicated the most data during the time frame depicted in the exhibit, we need to analyze

the replication activity shown in the graph or chart provided in the image. Since I cannot view the image directly, I will explain how to interpret such data based on typical Pure Storage FlashArray replication metrics.

Key Considerations:

Synchronous Replication:

Synchronous replication ensures that data is written to both the source and target arrays before acknowledging the write operation to the host. This guarantees zero RPO (Recovery Point Objective) and is typically used for mission-critical workloads requiring high availability.

Analyzing the Exhibit:

The exhibit likely shows a graph or chart with data transfer rates (in MB/s or GB/s) for each array over a specific time period. To identify the array that synchronously replicated the most data, look for the array with the highest cumulative data transfer during the time frame. This can be determined by calculating the area under the curve for each array's replication activity.

Array Names:

The arrays listed (dogfood-cheesewheel, dogfood-chuckwagon, dogfood-couch, dogfood-elk) are likely part of a lab or test environment (as indicated by the "dogfood" prefix, which is commonly used for internal testing).

Hypothetical Analysis:

If the exhibit shows that dogfood-cheesewheel has the highest peak replication rate and maintains consistent activity throughout the time frame, it would be the array that synchronously replicated the most data.

Conversely, arrays with lower or intermittent replication activity would not meet this criterion.

Recommendation:

Based on the assumption that the exhibit highlights dogfood-cheesewheel as having the highest replication activity, the correct answer is

A). dogfood-cheesewheel.

Reference: Pure Storage ActiveCluster Documentation:

ActiveCluster Overview

Explains synchronous replication and its use cases.

Pure Storage Replication Metrics:

Monitoring Replication

Provides guidance on interpreting replication activity and metrics.

質問 #44

.....

FAAA_005試験は難しいです。だから、FAAA_005復習教材を買いました。本当に助かりました。先月、FAAA_005試験に参加しました。今日は、試験の結果をチェックし、嬉しいことに、FAAA_005試験に合格しました。FAAA_005復習教材は有効的な資料です。

FAAA_005試験参考書: https://www.shikenpass.com/FAAA_005-shiken.html

お客様は安心で弊社のFAAA_005模擬問題集を利用することができます、Pure Storage FAAA_005関連問題資料PDF版は印刷可能なので、メモを取る習慣がある人にとって一番いいです、こちらで部分のPure Storage FAAA_005試験問題点と回答を無料的にダウンロードして試用後、購入を決めます、何故というと、FAAA_005学習教材の合格率が高いからです、なぜあなたは私たちShikenPASS FAAA_005試験参考書の研究の質問に挑戦してみてください、ShikenPASS FAAA_005試験参考書はあなたの成功を助けるために存在しているのですから、ShikenPASS FAAA_005試験参考書を選ぶということは成功を選ぶことと等しいです、ShikenPASSのPure StorageのFAAA_005試験トレーニング資料はShikenPASSの実力と豊富な経験を持っているIT専門家が研究したもので、本物のPure StorageのFAAA_005試験問題とほぼ同じです。

それから四五日は別段の事もなく過ぎ去った、ルーファスは地面から目を離せなくなった、お客様は安心で弊社のFAAA_005模擬問題集を利用することができます、PDF版は印刷可能なので、メモを取る習慣がある人にとって一番いいです。

FAAA_005試験の準備方法 | 真実的なFAAA_005関連問題資料試験 | 効果的なPure Storage FlashArray Architect Associate試験参考書

こちらで部分のPure Storage FAAA_005試験問題点と回答を無料的にダウンロードして試用後、購入を決めます、何故というと、FAAA_005学習教材の合格率が高いからです、なぜあなたは私たちShikenPASSの研究の質問に挑戦してみてください。

- FAAA_005試験問題集 □ FAAA_005資格トレーリング □ FAAA_005試験概要 □ ウェブサイト▶ jp.fast2test.com ▶を開き、➡ FAAA_005 □を検索して無料でダウンロードしてくださいFAAA_005日本語版

P.S.ShikenPASSがGoogle Driveで共有している無料の2026 Pure Storage FAAA_005ダン

フ: <https://drive.google.com/open?id=1aKh19paBCXnj5xAv9DvNPkAKbHHAJo>