

Reliable F5CAB2 Test Tutorial, Latest F5CAB2 Exam Simulator

We have dedicated staff to update all the content of F5CAB2 exam questions every day. So you don't need to worry about that you buy the materials so early that you can't learn the last updated content. And even if you failed to pass the exam for the first time, as long as you decide to continue to use BIG-IP Administration Data Plane Concepts (F5CAB2) torrent prep, we will also provide you with the benefits of free updates within one year and a half discount more than one year. F5CAB2 Test Guide use a very easy-to-understand language.

F5 F5CAB2 Exam Syllabus Topics:

Topic	Details
Topic 1	<ul style="list-style-type: none">Explain the relationship between interfaces, trunks, VLANs, self-IPs, routes and their statusstatistics: This domain covers BIG-IP networking components including interfaces, trunks, VLANs, self-IPs, and routes, their dependencies and status, plus predicting traffic paths and egress IPs.
Topic 2	<ul style="list-style-type: none">Determine expected traffic behavior based on configuration: This domain focuses on predicting traffic behavior based on persistence, processing order, object status, egress IPs, and connectionrate limits.
Topic 3	<ul style="list-style-type: none">Explain high availability (HA) concepts: This domain addresses HA concepts including integrity methods, implementation approaches, and advantages of high availability configurations.
Topic 4	<ul style="list-style-type: none">Identify the different virtual server types: This domain covers BIG-IP virtual server types: Standard, Forwarding, Stateless, Reject, Performance Layer 4, and Performance HTTP.
Topic 5	<ul style="list-style-type: none">Define ADC application objects: This domain covers ADC basics including application objects, load balancing methods, server selection, and key ADC features and benefits.

>> Reliable F5CAB2 Test Tutorial <<

Reliable F5CAB2 Test Tutorial - F5 BIG-IP Administration Data Plane Concepts (F5CAB2) - Latest F5CAB2 Exam Simulator

If you don't have enough time to study for your F5 F5CAB2 exam, PassLeaderVCE provides F5 F5CAB2 Pdf questions. You may quickly download F5 F5CAB2 exam questions in PDF format on your smartphone, tablet, or desktop. You can Print F5 F5CAB2 PDF Questions and answers on paper and make them portable so you can study on your own time and carry them wherever you go.

F5 BIG-IP Administration Data Plane Concepts (F5CAB2) Sample Questions

(Q34-Q39):

NEW QUESTION # 34

An organization needs to deploy an HTTP application on a BIG-IP system. The requirements specify hardware acceleration to enhance performance, while HTTP optimization features are not required.

What type of virtual server and associated protocol profile should be used to meet these requirements?

(Choose one answer)

- A. Type: Standard Protocol Profile: tcp-wan-optimized
- B. Type: Stateless Protocol Profile: fastL4
- C. Type: Performance (HTTP) Protocol Profile: fasthttp
- D. Type: Performance (Layer 4) Protocol Profile: fastL4

Answer: D

Explanation:

To select the correct virtual server type, an administrator must balance the need for L7 intelligence versus raw throughput and hardware offloading.

* Performance (Layer 4) Virtual Server: This type is designed for maximum speed. It uses the fastL4 profile, which allows the BIG-IP system to leverage the ePVA (Embedded Packet Velocity Accelerator) hardware chip. When a Performance (L4) virtual server is used, the system processes packets at the network layer (L4) without looking into the application payload (L7). This fulfills the requirement for hardware acceleration and avoids the overhead of HTTP optimization features, which are not needed in this scenario.

* Performance (HTTP) Virtual Server: While fast, this type uses the fasthttp profile to provide some L7 awareness and optimization (like header insertion or small-scale multiplexing). Since the requirement specifically states HTTP optimization is not required, the L4 variant is more efficient.

* Standard Virtual Server: This is a full-proxy type. While it offers the most features (SSL offload, iRules, Compression), it processes traffic primarily in the TMOS software layer (or via high-level hardware assistance), which is "slower" than the pure hardware switching path of the Performance (L4) type.

* Stateless Virtual Server: This is typically used for specific UDP/ICMP traffic where the system does not need to maintain a connection table. It is not appropriate for standard HTTP (TCP) applications requiring persistent sessions or stateful load balancing. By choosing Performance (Layer 4) with the fastL4 profile, the organization ensures that the traffic is handled by the hardware acceleration chips, providing the lowest latency and highest throughput possible for their HTTP application.

NEW QUESTION # 35

Refer to the exhibit.

The network team creates a new VLAN on the switches. The BIG-IP Administrator creates a new VLAN and a Self IP on the BIG-IP device, but the servers on the new VLAN are NOT reachable from the BIG-IP device.

Which action should the BIG-IP Administrator take to resolve this issue? (Choose one answer)

- A. Assign a physical interface to the new VLAN
- B. Set Port Lockdown of the Self IP to Allow All
- C. Create a Floating Self IP address
- D. Change Auto Last Hop to enabled

Answer: A

Explanation:

Comprehensive and Detailed Explanation (BIG-IP Administration - Data Plane Concepts):

For BIG-IP to send or receive traffic on a VLAN, that VLAN must be bound to a physical interface or a trunk. Creating a VLAN object and a Self IP alone is not sufficient to establish data-plane connectivity.

From the exhibit:

The VLAN (vlan_1033) exists and has a tag defined.

A Self IP is configured and associated with the VLAN.

However, traffic cannot reach servers on that VLAN.

This indicates a Layer 2 connectivity issue, not a Layer 3 or HA issue.

Why assigning a physical interface fixes the problem:

BIG-IP VLANs do not carry traffic unless they are explicitly attached to:

A physical interface (e.g., 1.1), or

A trunk

Without an interface assignment, the VLAN is effectively isolated and cannot transmit or receive frames, making servers unreachable regardless of correct IP addressing.

Why the other options are incorrect:

A . Set Port Lockdown to Allow All

Port Lockdown controls which services can be accessed on the Self IP (management-plane access), not whether BIG-IP can reach servers on that VLAN.

B . Change Auto Last Hop to enabled

Auto Last Hop affects return traffic routing for asymmetric paths. It does not fix missing Layer 2 connectivity.

D . Create a Floating Self IP address

Floating Self IPs are used for HA failover. They do not resolve reachability issues on a single device when the VLAN itself is not connected to an interface.

Conclusion:

The servers are unreachable because the VLAN has no physical interface assigned. To restore connectivity, the BIG-IP Administrator must assign a physical interface (or trunk) to the VLAN, enabling Layer 2 traffic flow.

NEW QUESTION # 36

A BIG-IP Administrator is informed that traffic on interface 1.1 is expected to increase beyond the maximum bandwidth capacity of the link. There is a single VLAN on the interface.

What should the BIG-IP Administrator do to increase the total available bandwidth? (Choose one answer)

- A. Create a trunk object with two interfaces
- B. Assign two interfaces to the VLAN
- C. Set the media speed of interface 1.1 manually
- D. Increase the MTU on the VLAN using interface 1.1

Answer: A

Explanation:

Comprehensive and Detailed Explanation (BIG-IP Administration - Data Plane Concepts):

On BIG-IP systems, physical interface bandwidth is fixed by the link speed (for example, 1GbE or 10GbE). When traffic demand exceeds the capacity of a single interface, BIG-IP provides link aggregation through trunks.

Key concepts involved:

Interfaces

A single physical interface (such as 1.1) is limited to its negotiated link speed. You cannot exceed this capacity through software tuning alone.

Trunks (Link Aggregation)

A trunk combines multiple physical interfaces into a single logical interface.

BIG-IP supports LACP and static trunks.

Traffic is distributed across member interfaces, increasing aggregate bandwidth and providing redundancy.

VLANs are then assigned to the trunk, not directly to individual interfaces.

Why option B is correct:

Creating a trunk with two interfaces allows BIG-IP to use both physical links simultaneously.

This increases total available bandwidth (for example, two 10Gb interfaces → up to 20Gb aggregate capacity).

This is the documented and supported method for scaling bandwidth on BIG-IP.

Why the other options are incorrect:

A . Increase the MTU

MTU changes affect packet size and efficiency, not total bandwidth capacity.

C . Assign two interfaces to the VLAN

BIG-IP does not support assigning a VLAN to multiple interfaces directly. VLANs must be associated with one interface or one trunk.

D . Set the media speed manually

Media speed can only be set up to the physical capability of the interface and connected switch port. It cannot exceed the hardware limit.

Conclusion:

To increase total available bandwidth on BIG-IP when a single interface is insufficient, the administrator must create a trunk object with multiple interfaces and move the VLAN onto the trunk. This aligns directly with BIG-IP data plane design and best practices.

NEW QUESTION # 37

A BIG-IP Administrator is making adjustments to an iRule and needs to identify which of the 235 virtual server configured on the BIG-IP device will be affected. How should the administrator obtain this information in an effective way? (Choose one answer)

- A. Local Traffic > Network Map
- B. Local Traffic > Pools
- C. Local Traffic > Virtual Server
- D. Local Traffic > iRules

Answer: A

Explanation:

In a large-scale BIG-IP environment with hundreds of virtual servers, the Network Map is the most effective tool for visualizing and auditing the relationships between various ADC objects.

* The Network Map Functionality: The Network Map provides a hierarchical view of the local traffic objects. It allows an administrator to see the status and dependencies of Virtual Servers, Pools, Pool Members, and associated iRules all in one screen.

* Search and Filter: By navigating to Local Traffic > Network Map, the administrator can use the Advanced Filter. This feature allows for searching specifically for an iRule name or a string within an iRule definition. Once the filter is applied, the system displays only the Virtual Servers that are associated with that specific iRule.

* Efficiency: While the "Virtual Server List" (Option D) can be customized to show columns for iRules, it is often cumbersome to scroll through hundreds of entries. The "iRules List" (Option B) displays the scripts themselves but does not provide a reverse-lookup list of all associated virtual servers in a single view as efficiently as the Network Map.

* Summary of Relationships: The Network Map is specifically designed to answer the question, "What is this object connected to?" making it the primary administrative interface for impact analysis during configuration changes.

NEW QUESTION # 38

Which virtual server type is being configured in the screenshot? (Choose one answer.)

- A. Standard
- B. Performance Layer 4
- C. Forwarding IP

Answer: B

Explanation:

Comprehensive and Detailed Explanation (BIG-IP Administration - Data Plane Concepts):

The configuration shown matches a Performance Layer 4 virtual server because it is explicitly using a FastL4 profile:

The screenshot shows Protocol: TCP and Protocol Profile (Client): fastL4.

In BIG-IP data plane terms, FastL4 is the hallmark of a Performance (Layer 4) virtual server, designed to process connections at Layer 4 with minimal overhead (high throughput/low latency) compared to full proxy L7 processing.

The screenshot also shows HTTP Profile (Client): None (and HTTP server profile effectively not in use).

A Standard virtual server commonly uses full-proxy features and frequently includes L7 profiles (like HTTP) when doing HTTP-aware load balancing, header manipulation, cookie persistence, etc. In contrast, a Performance L4 virtual server typically does not use an HTTP profile because it is not doing HTTP-aware (Layer 7) processing.

It is not a Forwarding IP virtual server:

A Forwarding (IP) virtual server is used to route/forward packets (often without load balancing to pool members in the same way as Standard/Performance VS) and is selected by choosing a forwarding type. The presence of a TCP protocol with a FastL4 client profile aligns with a Layer 4 load-balancing style virtual server, not a packet-forwarding virtual server type.

Conclusion: Because the configuration is TCP-based and explicitly uses fastL4 with no HTTP profile, the expected BIG-IP virtual server type is Performance Layer 4 (Option C).

NEW QUESTION # 39

.....

You still can pass the exam with our help. The key point is that you are serious on our F5 F5CAB2 exam questions and not just kidding. Our F5CAB2 practice engine can offer you the most professional guidance, which is helpful for your gaining the certificate. And our BIG-IP Administration Data Plane Concepts (F5CAB2) F5CAB2 learning guide contains the most useful content and keypoints which will come up in the real exam.

Latest F5CAB2 Exam Simulator: <https://www.passleadervce.com/F5-CA/reliable-F5CAB2-exam-learning-guide.html>

