


# CT-AI必殺問題集、CT-AI模擬試験



BONUS! ! ! ShikenPASS CT-AIダンプの一部を無料でダウンロード: [https://drive.google.com/open?id=1fbYDIE0DHsZ5OQTdSalzQG\\_6IY4olrMp](https://drive.google.com/open?id=1fbYDIE0DHsZ5OQTdSalzQG_6IY4olrMp)

ShikenPASSはもっぱらISTQBプロCT-AI認証試験に関する知識を提供するのサイトで、ほかのサイト使った人はShikenPASSが最高の知識源サイトと比較します。ShikenPASSの商品はとても頼もしいCT-AI試験の練習問題と解答は非常に正確でございます。

私たちのCT-AI研究ブレーンダンプは、この点でユーザーの需要を満たすのに非常に優れている可能性があり、ユーザーが学習したことを継続的に統合する良い環境で読み書きできるようにします。CT-AI準備ガイドは高品質です。当社のウェブサイトのCT-AI学習クイズバンクおよび教材は、選択したトピックに基づいて最新の質問と回答を検索します。この選択は、あなたのキャリア全体の突破口となるので、CT-AIスタディガイドの高い品質と正確性に驚かされるでしょう。

>> CT-AI必殺問題集 <<

## 真実のISTQB CT-AI | 高品質なCT-AI必殺問題集試験 | 試験の準備方法 Certified Tester AI Testing Exam模擬試験

ShikenPASSは強いIT専門家のチームを持っていて、彼らは専門的な目で、最新的なISTQBのCT-AI試験トレーニング資料に注目しています。私たちのISTQBのCT-AI問題集があれば、君は少ない時間で勉強して、ISTQBのCT-AI認定試験に簡単に合格できます。うちの商品を購入した後、私たちは一年間で無料更新サービスを提供することができます。

### ISTQB CT-AI認定試験の出題範囲:

| トピック   | 出題範囲                                                                                                                                                                        |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| トピック 1 | <ul style="list-style-type: none"><li>Test Environments for AI-Based Systems: This section is about factors that differentiate the test environments for AI-based</li></ul> |
| トピック 2 | <ul style="list-style-type: none"><li>Using AI for Testing: In this section, the exam topics cover categorizing the AI technologies used in software testing.</li></ul>     |

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| トピック 3  | <ul style="list-style-type: none"> <li>Quality Characteristics for AI-Based Systems: This section covers topics covered how to explain the importance of flexibility and adaptability as characteristics of AI-based systems and describes the vitality of managing evolution for AI-based systems. It also covers how to recall the characteristics that make it difficult to use AI-based systems in safety-related applications.</li> </ul> |
| トピック 4  | <ul style="list-style-type: none"> <li>Neural Networks and Testing: This section of the exam covers defining the structure and function of a neural network including a DNN and the different coverage measures for neural networks.</li> </ul>                                                                                                                                                                                                |
| トピック 5  | <ul style="list-style-type: none"> <li>ML: Data: This section of the exam covers explaining the activities and challenges related to data preparation. It also covers how to test datasets create an ML model and recognize how poor data quality can cause problems with the resultant ML model.</li> </ul>                                                                                                                                   |
| トピック 6  | <ul style="list-style-type: none"> <li>Methods and Techniques for the Testing of AI-Based Systems: In this section, the focus is on explaining how the testing of ML systems can help prevent adversarial attacks and data poisoning.</li> </ul>                                                                                                                                                                                               |
| トピック 7  | <ul style="list-style-type: none"> <li>Testing AI-Specific Quality Characteristics: In this section, the topics covered are about the challenges in testing created by the self-learning of AI-based systems.</li> </ul>                                                                                                                                                                                                                       |
| トピック 8  | <ul style="list-style-type: none"> <li>ML Functional Performance Metrics: In this section, the topics covered include how to calculate the ML functional performance metrics from a given set of confusion matrices.</li> </ul>                                                                                                                                                                                                                |
| トピック 9  | <ul style="list-style-type: none"> <li>systems from those required for conventional systems.</li> </ul>                                                                                                                                                                                                                                                                                                                                        |
| トピック 10 | <ul style="list-style-type: none"> <li>Introduction to AI: This exam section covers topics such as the AI effect and how it influences the definition of AI. It covers how to distinguish between narrow AI, general AI, and super AI; moreover, the topics covered include describing how standards apply to AI-based systems.</li> </ul>                                                                                                     |

## ISTQB Certified Tester AI Testing Exam 認定 CT-AI 試験問題 (Q71-Q76):

### 質問 #71

A system was developed for screening the X-rays of patients for potential malignancy detection (skin cancer).

A workflow system has been developed to screen multiple cancers by using several individually trained ML models chained together in the workflow.

Testing the pipeline could involve multiple kind of tests (I - III):

- I. Pairwise testing of combinations
- II. Testing each individual model for accuracy
- III. A/B testing of different sequences of models

Which ONE of the following options contains the kinds of tests that would be MOST APPROPRIATE to include in the strategy for optimal detection?

SELECT ONE OPTION

- A. Only III
- B. Only II
- C. I and III
- D. I and II

正解: D

解説:

The question asks which combination of tests would be most appropriate to include in the strategy for optimal detection in a workflow system using multiple ML models.

\* Pairwise testing of combinations (I): This method is useful for testing interactions between different components in the workflow to ensure they work well together, identifying potential issues in the integration.

\* Testing each individual model for accuracy (II): Ensuring that each model in the workflow performs accurately on its own is crucial before integrating them into a combined workflow.

\* A/B testing of different sequences of models (III): This involves comparing different sequences to determine which configuration yields the best results. While useful, it might not be as fundamental as pairwise and individual accuracy testing in the initial stages.

References:

\* ISTQB CT-AI Syllabus Section 9.2 on Pairwise Testing and Section 9.3 on Testing ML Models emphasize the importance of

testing interactions and individual model accuracy in complex ML workflows.

### 質問 # 72

Before deployment of an AI based system, a developer is expected to demonstrate in a test environment how decisions are made. Which of the following characteristics does decision making fall under?

- A. Autonomy
- B. Self-learning
- C. Explainability
- D. Non-determinism

正解: C

解説:

Explainability in AI-based systems refers to the ease with which users can determine how the system reaches a particular result. It is a crucial aspect when demonstrating AI decision-making, as it ensures that decisions made by AI models are transparent, interpretable, and understandable by stakeholders.

Before deploying an AI-based system, a developer must validate how decisions are made in a test environment. This process falls under the characteristic of explainability because it involves clarifying how an AI model arrives at its conclusions, which helps build trust in the system and meet regulatory and ethical requirements.

\* ISTQB CT-AI Syllabus (Section 2.7: Transparency, Interpretability, and Explainability)

\* "Explainability is considered to be the ease with which users can determine how the AI-based system comes up with a particular result".

\* "Most users are presented with AI-based systems as 'black boxes' and have little awareness of how these systems arrive at their results. This ignorance may even apply to the data scientists who built the systems. Occasionally, users may not even be aware they are interacting with an AI-based system".

\* ISTQB CT-AI Syllabus (Section 8.6: Testing the Transparency, Interpretability, and Explainability of AI-based Systems)

\* "Testing the explainability of AI-based systems involves verifying whether users can understand and validate AI-generated decisions. This ensures that AI systems remain accountable and do not make incomprehensible or biased decisions".

\* Contrast with Other Options:

\* Autonomy (B): Autonomy relates to an AI system's ability to operate independently without human oversight. While decision-making is a key function of autonomy, the focus here is on demonstrating the reasoning behind decisions, which falls under explainability rather than autonomy.

\* Self-learning (C): Self-learning systems adapt based on previous data and experiences, which is different from making decisions understandable to humans.

\* Non-determinism (D): AI-based systems are often probabilistic and non-deterministic, meaning they do not always produce the same output for the same input. This can make testing and validation more challenging, but it does not relate to explaining the decision-making process.

Supporting References from ISTQB Certified Tester AI Testing Study Guide:Conclusion:Since the question explicitly asks about the characteristic under which decision-making falls when being demonstrated before deployment, explainability is the correct choice because it ensures that AI decisions are transparent, understandable, and accountable to stakeholders.

### 質問 # 73

Which ONE of the following hardware is MOST suitable for implementing AI when using ML?

SELECT ONE OPTION

- A. 64-bit CPUs.
- B. Hardware supporting fast matrix multiplication.
- C. High powered CPUs.
- D. Hardware supporting high precision floating point operations.

正解: B

解説:

A . 64-bit CPUs.

While 64-bit CPUs are essential for handling large amounts of memory and performing complex computations, they are not specifically optimized for the types of operations commonly used in machine learning.

B . Hardware supporting fast matrix multiplication.

Matrix multiplication is a fundamental operation in many machine learning algorithms, especially in neural networks and deep learning.

Hardware optimized for fast matrix multiplication, such as GPUs (Graphics Processing Units), is most suitable for implementing AI and ML because it can handle the parallel processing required for these operations efficiently.

C . High powered CPUs.

High powered CPUs are beneficial for general-purpose computing tasks and some aspects of ML, but they are not as efficient as specialized hardware like GPUs for matrix multiplication and other ML-specific tasks.

D . Hardware supporting high precision floating point operations.

High precision floating point operations are important for scientific computing and some specific AI tasks, but for many ML applications, fast matrix multiplication is more critical than high precision alone.

Therefore, the correct answer is B because hardware supporting fast matrix multiplication, such as GPUs, is most suitable for the parallel processing requirements of machine learning.

#### 質問 # 74

Which ONE of the following tests is MOST likely to describe a useful test to help detect different kinds of biases in ML pipeline?  
SELECT ONE OPTION

- A. Check the input test data for potential sample bias.
- B. **Test the model during model evaluation for data bias.**
- C. Testing the data pipeline for any sources for algorithmic bias.
- D. Testing the distribution shift in the training data for inappropriate bias.

正解： B

解説：

Detecting biases in the ML pipeline involves various tests to ensure fairness and accuracy throughout the ML process.

\* Testing the distribution shift in the training data for inappropriate bias (A): This involves checking if there is any shift in the data distribution that could lead to bias in the model. It is an important test but not the most direct method for detecting biases.

\* Test the model during model evaluation for data bias (B): This is a critical stage where the model is evaluated to detect any biases in the data it was trained on. It directly addresses potential data biases in the model.

\* Testing the data pipeline for any sources for algorithmic bias (C): This test is crucial as it helps identify biases that may originate from the data processing and transformation stages within the pipeline. Detecting sources of algorithmic bias ensures that the model does not inherit biases from these processes.

\* Check the input test data for potential sample bias (D): While this is an important step, it focuses more on the input data and less on the overall data pipeline.

Hence, the most likely useful test to help detect different kinds of biases in the ML pipeline is B. Test the model during model evaluation for data bias.

:

ISTQB CT-AI Syllabus Section 8.3 on Testing for Algorithmic, Sample, and Inappropriate Bias discusses various tests that can be performed to detect biases at different stages of the ML pipeline.

Sample Exam Questions document, Question #32 highlights the importance of evaluating the model for biases.

#### 質問 # 75

A system is to be developed to detect lung cancer using X-ray images.

Which statement BEST describes the difference between a conventional system and an AI system with supervised machine learning?  
Choose ONE option (1 out of 4)

- A. The X-ray images that an AI system can analyze must be structurally different from X-ray images used in a conventional system.
- B. **An AI system independently determines patterns in X-rays during training; a conventional system requires a human to program in those patterns.**
- C. The implementation of an AI system consists mainly of training data, whereas that of a conventional system consists of branches and loops.
- D. The results of analyzing an X-ray for lung cancer using an AI system are more understandable than with a conventional system.

正解： B

解説：

The syllabus explains the fundamental distinction between conventional systems and AI-based systems using supervised machine learning in Section 1.3 - AI-Based and Conventional Systems. A conventional system relies on human-programmed logic such as

branches, conditions, and explicit rules-to interpret input data.

The system behaves exactly as specified by its developers.

In contrast, AI systems using supervised learning automatically learn patterns from labeled data. The syllabus states that "patterns in data are used by the system to determine how it should react in the future..."

The AI determines on its own what patterns or features in the data can be used". This aligns directly with Option C: an AI system identifies relevant diagnostic patterns in X-ray images during training, whereas a conventional system requires human experts to explicitly program those patterns.

Option A is incorrect because AI outputs are typically less explainable, not more. Option B is incorrect because both systems can use the same X-ray images; ML does not require structurally different images. Option D is oversimplified and not fully accurate; while training data is central to ML, AI systems also include architecture, algorithms, and preprocessing—not just data. Thus Option C is the correct and syllabus-aligned answer.

## 質問 #76

CT-AI試験の準備は大変ですか？復習も大変でしょう？多くの知識を暗記するのが無理でしょう？今我々は便利なISTQBオンライン版を提供します。安全問題を心配する必要がなく、Windows/Mac/Android/iOS対応で、繰り返してCT-AI模擬試験をして暗記のが簡単になります。

CT-AI模擬試験: <https://www.shikenpass.com/CT-AI-shiken.html>

P.S.ShikenPASSがGoogle Driveで共有している無料の2026 ISTQB CT-AIダンプ: [https://drive.google.com/open?id=1fbYDIE0DHsZ5OOTdSaIzOG\\_6IY4ohrMp](https://drive.google.com/open?id=1fbYDIE0DHsZ5OOTdSaIzOG_6IY4ohrMp)