

Reliable JN0-364 Exam Pattern - JN0-364 Examcollection Dumps

JN0-360.examcollection.premium.exam.322q

Number: JN0-360
Passing Score: 800
Time Limit: 120 min
File Version: 8.0

JN0-360

Juniper Networks Certified Internet Specialist, - Service Provider (JNCIS-SP)

Version 8.0

Sections
1. Volume A
2. Volume B
3. Volume C

<http://www.gratisexam.com>

Preparing with Real4Prep Service Provider Routing and Switching, Specialist (JNCIS-SP) (JN0-364) practice exam would be the most effective way to get success. Real4Prep would give you access to Service Provider Routing and Switching, Specialist (JNCIS-SP) (JN0-364) exam questions that are factual and unambiguous, as well as information that is important for the preparation of the JN0-364 JN0-364 exam.

Real4Prep has a huge team of IT experts, who continue to use their knowledge and experience to study a lot of IT certification examination papers of past few years. Their findings of the research is now the product of Real4Prep, therefore Real4Prep's Juniper JN0-364 Practice Questions are very similar with the real exam, which can help a lot of people to realize their dreams. Real4Prep can ensure you to successfully pass the exam, and you can boldly Add Real4Prep's products to your shopping cart. With Real4Prep your dreams can be achieved immediately.

>> Reliable JN0-364 Exam Pattern <<

JN0-364 Examcollection Dumps & New JN0-364 Exam Review

All the JN0-364 study materials of our company are designed by the experts and professors in the field. The quality of our study materials is guaranteed. According to the actual situation of all customers, we will make the suitable study plan for all customers. If you buy the JN0-364 Study Materials from our company, we can promise that you will get the professional training to help you pass your exam easily. By our professional training, you will pass your exam and get the related certification in the shortest time.

Juniper Service Provider Routing and Switching, Specialist (JNCIS-SP) Sample Questions (Q23-Q28):

NEW QUESTION # 23

Exhibit:

```
user@Router-1> show route 172.24/16
inet.0: 9 destinations, 9 routes (9 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
```

...
172.24.0.0/24 *[OSPF/150] 01:31:31, metric 0, tag 0

> to 172.20.0.2 via ge-0/0/2.0

to 172.20.1.2 via ge-0/0/3.0

```
user@Router-1> show route forwarding-table
```

Routing table: default.inet

Internet:

```
Destination Type RtRefNext hop Type Index NhRefNetif
```

...

172.24.0.0/24 user 0

172.20.0.2 ucst 551 2 ge-0/0/2.0

172.20.1.2 ucst 552 2 ge-0/0/3.0

Referring to the exhibit, which two statements are true? (Choose two.)

- A. This router will only choose the next hop with a > next to it in the routing table.
- B. The default route load-balancing behavior of this router has been modified.
- C. This router will choose both next hops in the routing table.
- D. The router is performing default route load-balancing behavior.

Answer: B,C

Explanation:

In Junos OS, understanding the distinction between the Routing Information Base (RIB) and the Forwarding Information Base (FIB) is fundamental to analyzing traffic patterns and load-balancing behavior. The RIB (show route) contains all prefixes learned via various protocols, while the FIB (show route forwarding-table) contains only the active next-hops that are actually programmed into the Packet Forwarding Engine (PFE).

According to Juniper Networks technical documentation, the default behavior for Junos OS when encountering Equal-Cost Multipath (ECMP) routes is to select only a single next-hop from the available candidates in the RIB and install that single path into the FIB. In a default state, even if the show route output displays multiple next-hops for a destination like 172.24.0.0/24, only one would have the active route symbol (>) and only that one would appear in the forwarding table.

In the provided exhibit, the show route output shows two next-hops for 172.24.0.0/24, but only the first one (172.20.0.2) is marked with the > symbol as the active selection. However, the subsequent show route forwarding-table output reveals that both next-hops (172.20.0.2 and 172.20.1.2) are currently present in the forwarding table for that same destination. This discrepancy indicates that the default load-balancing behavior has been modified (Option B). This modification is typically achieved by creating a routing policy with the action then load-balance per-packet (which actually results in flow-based load balancing) and applying it to the forwarding table via the export statement under [edit routing-options forwarding-table].

Because the forwarding table now contains both next-hops, the router is no longer restricted to a single path.

Therefore, the router will choose both next-hops in the routing table (Option D) for packet forwarding, distributing flows across the two available Gigabit Ethernet interfaces (ge-0/0/2.0 and ge-0/0/3.0). This ensures higher utilized bandwidth and provides redundancy at the data plane level.

NEW QUESTION # 24

Exhibit:

□ Referring to the exhibit, R1 and R2 are configured to run IS-IS. The IS-IS adjacency between R1 and R2 is up. What does the output of the show isis interface command tell you about R1?

- A. R1 only forms a Level 2 adjacency with R2.
- B. R1 sends Level 1 hello PDUs to R2.
- C. R1 is not configured to use wide metrics.
- D. R1 advertises a Level 1 metric of 100 and a Level 2 metric of 100 toward R2 in its link-state PDU.

Answer: A

Explanation:

In the IS-IS (Intermediate System to Intermediate System) protocol as implemented in Junos OS, routers can operate at two hierarchical levels: Level 1 (L1) for intra-area routing and Level 2 (L2) for inter-area backbone routing. By default, a Juniper router and its interfaces are configured to act as Level 1/2, meaning they will attempt to form adjacencies at both levels simultaneously. According to Juniper Networks technical documentation, the `show isis interface` command provides a granular view of how the protocol is interacting with specific local links. In the provided exhibit, we must examine the L (Level) column and the DR (Designated Router) status columns to understand R1's operational state.

* Level Configuration: Under the L column for both the physical interface `ge-0/0/0.0` and the loopback `lo0.0`, the value is `strictly2`.

This indicates that these interfaces have been explicitly configured to operate only at Level 2.

* Adjacency Capabilities: For the interface `ge-0/0/0.0`, the Level 1 DR field is marked as `disabled`. This confirms that R1 is not participating in Level 1 operations on this link; it will not transmit Level 1 Hello PDUs, nor will it listen for them. Consequently, R1 is incapable of forming a Level 1 adjacency with R2 on this segment.

* Metric Implications: The exhibit shows an L1/L2 Metric of `100/100`. In Junos, "narrow" metrics (the default) are limited to a maximum value of 63 per interface. A metric of 100 indicates that wide metrics (wide-metrics-only) have been enabled. Therefore, option A is incorrect because the router is using wide metrics.

Since the prompt states the adjacency is "up," and the interface is restricted to Level 2, we can conclude that R1 only forms a Level 2 adjacency with R2 (Option B). Even though an L1 metric of 100 is displayed in the table as a configured value, it is not actually "advertised" in a Link-State PDU because the Level 1 protocol is disabled on that interface.

NEW QUESTION # 25

By default, which routing table contains a list of all ingress LSPs?

- A. `inet.2`
- B. `inet.0`
- C. `inet.3`
- D. `inet.1`

Answer: C

Explanation:

In the Juniper Networks Junos operating system, the management of routing information is partitioned into several distinct routing tables (RIBs), each serving a specific architectural purpose. When dealing with Multiprotocol Label Switching (MPLS), understanding the distinction between `inet.0` and `inet.3` is fundamental for troubleshooting and traffic engineering.

The `inet.3` routing table is specifically designed to store the egress IPv4 addresses of Label-Switched Paths (LSPs). When an ingress router successfully establishes an LSP (via RSVP or LDP), it places the host address of the egress router (the tail-end) into the `inet.3` table. This table is not used for general packet forwarding; instead, it is primarily used by the Border Gateway Protocol (BGP) for next-hop resolution. When BGP receives a route, it checks both `inet.0` and `inet.3` to resolve the next hop. If a matching entry exists in `inet.3`, the router knows it can reach that destination via an MPLS tunnel, allowing for the encapsulation of BGP traffic within MPLS.

In contrast, `inet.0` is the default unicast routing table used for standard IPv4 forwarding and contains routes learned via IGP (OSPF, IS-IS) or static routing. `inet.1` is utilized for multicast forwarding (MBGP), and `inet.2` is typically used for Multicast Source Discovery Protocol (MSDP) or RPF checks in multicast environments.

By isolating LSP egress points in `inet.3`, Junos prevents MPLS-specific paths from interfering with standard IGP path selection unless the administrator explicitly chooses to merge them (e.g., using the `traffic-engineering bgp-igp` command). Therefore, by default, the ingress router maintains its list of reachable LSP endpoints in `inet.3`.

NEW QUESTION # 26

What prevents routing loops in a single-area OSPF network?

- A. Forwarding policies
- B. Routing policies
- C. The Bellman-Ford algorithm
- D. The Dijkstra algorithm

Answer: D

Explanation:

In OSPF, loop prevention within a single area is achieved through the fundamental nature of its link-state architecture. Unlike distance-vector protocols that rely on "routing by rumor," OSPF ensures that every router within an area maintains an identical Link-State Database (LSDB). This database acts as a complete map of the network topology.

Once the LSDB is synchronized, each router independently executes the Shortest Path First (SPF) algorithm, which is formally known as the Dijkstra algorithm. This mathematical process treats the local router as the "root" of a tree and calculates the shortest path to every other node (router) and prefix in the area based on the cumulative interface costs. Because every router uses the same synchronized map (the LSDB) and the same deterministic algorithm, they all arrive at a consistent, loop-free view of the best paths.

According to Juniper Networks technical documentation, the Dijkstra algorithm is superior to the Bellman-Ford algorithm (used by distance-vector protocols like RIP) in this regard. Bellman-Ford is susceptible to

"count-to-infinity" problems and loops because routers only know the distance and direction to a destination provided by their neighbors, rather than the full topology. In OSPF, even if a link fails, the updated Link-State Advertisement (LSA) is flooded rapidly, and the Dijkstra algorithm is re-run to find a new loop-free path.

Routing policies (Option B) are used to manipulate path selection or filter routes but are not the primary mechanism for fundamental loop prevention in OSPF. Similarly, forwarding policies (Option D) govern how traffic is handled at the data plane level rather than determining the control plane's loop-free topology.

NEW QUESTION # 27

Which term describes the router where traffic enters an MPLS label-switched path (LSP)?

- A. egress router
- B. **ingress router**
- C. penultimate router
- D. transit router

Answer: B

Explanation:

In the architecture of a Label-Switched Path (LSP), routers are categorized based on their role in the handling of a specific packet's lifecycle through the MPLS network. Juniper Networks documentation defines these roles clearly:

The Ingress Router (Option D), also known as the Ingress Label Edge Router (LER), is the entry point of the LSP. Its primary responsibility is to take an incoming "unlabeled" packet (usually a standard IPv4 or IPv6 packet), perform a route lookup, and determine which LSP the packet should follow. Once determined, the Ingress router performs a Push operation, where it encapsulates the packet with an MPLS label header and forwards it toward the next hop. This is where the transition from IP-based forwarding to Label-based switching occurs.

To contrast this with the other options:

* Transit Router (Option B): These are routers located between the ingress and egress. They perform Swap operations, replacing an incoming label with an outgoing label based on the Label Forwarding Information Base (LFIB).

* Egress Router (Option A): This is the "tail-end" of the LSP where the packet exits the MPLS domain and the final label is removed (if it hasn't been removed already by the penultimate hop).

* Penultimate Router (Option C): This is the second-to-last router in the path. As discussed in previous questions, it often performs the Pop operation (Penultimate Hop Popping) to remove the transport label before sending the packet to the Egress LER.

Therefore, the router where traffic first "enters" the LSP and receives its initial label is strictly defined as the Ingress router.

NEW QUESTION # 28

.....

Real4Prep serves as a most important source of IT certification information. You can find learning materials and study guides. If you are interested in our Real4Prep Juniper JN0-364 exam dumps, you can depend on our Real4Prep to make a sound choice.

Real4Prep Juniper JN0-364 test packed so much with the latest information about the certification training. By using our Real4Prep Juniper JN0-364 practice test, you have made preparations for the exam.

JN0-364 Exam Collection Dumps: <https://www.real4prep.com/JN0-364-exam.html>

JN0-364 Exam Prep with Passing Guarantee, There is a large range of JN0-364 certifications that can help you improve your professional worth and make your dreams come true. In particular, our experts keep the JN0-364 real test the latest version, they check updates every day and send them to your e-mail in time, making sure that you know the latest news, Juniper Reliable JN0-364 Exam Pattern Stop hesitating now, time is money.

Conditional Operator and Template Specialization as Conditional Constructs, Provide correct sample entries to prevent confusion, JN0-364 Exam Prep with Passing Guarantee.

There is a large range of JN0-364 certifications that can help you improve your professional worth and make your dreams come true, In particular, our experts keep the JN0-364 real test the latest version, they check updates every day and send them to your e-mail in time, making sure that you know the latest news.

Juniper JN0-364 Exam | Reliable JN0-364 Exam Pattern - Quality and Value Guaranteed of JN0-364 Examcollection Dumps

Stop hesitating now, time is money, Only an approved and JN0-364 tested preparation material offers the best results in the market.

- 100% Pass Quiz Juniper - Trustable Reliable JN0-364 Exam Pattern □ Immediately open ⇒ www.pass4test.com ⇌ and search for ✓ JN0-364 □✓□ to obtain a free download □JN0-364 Reliable Exam Simulations
- Reliable JN0-364 Exam Pattern - Quiz 2026 Realistic Juniper Service Provider Routing and Switching, Specialist (JNCIS-SP) Examcollection Dumps □ “www.pdfvce.com” is best website to obtain ✓ JN0-364 □✓□ for free download □Best JN0-364 Preparation Materials
- Best JN0-364 Preparation Materials □ Reliable JN0-364 Exam Voucher □ Exam JN0-364 Study Solutions □ Go to website **【** www.pdfdumps.com **】** open and search for ➤ JN0-364 □ to download for free □JN0-364 Valid Test Bootcamp
- Pass Guaranteed Quiz 2026 Juniper JN0-364: Service Provider Routing and Switching, Specialist (JNCIS-SP) Pass-Sure Reliable Exam Pattern □ Open ➤ www.pdfvce.com ↳ enter ➤ JN0-364 □ and obtain a free download □JN0-364 Valid Test Bootcamp
- JN0-364 Test Book □ Valid JN0-364 Exam Cram □ Reliable JN0-364 Exam Preparation □ [www.examcollectionpass.com] is best website to obtain 《 JN0-364 》 for free download □JN0-364 Valid Exam Sample
- Vce JN0-364 Download □ Valid JN0-364 Exam Cram □ Valid JN0-364 Exam Sims □ Search for ➤ JN0-364 □ and download exam materials for free through ➤ www.pdfvce.com ↳ □Latest JN0-364 Exam Pattern
- Juniper JN0-364 Dumps | Questions (2026) □ Search for ➤ JN0-364 ↳ and obtain a free download on ⇒ www.prepawayte.com ⇌ □Valid JN0-364 Guide Files
- Examcollection JN0-364 Dumps □ JN0-364 Pass4sure Exam Prep □ Vce JN0-364 Download □ Search for **【** JN0-364 **】** and easily obtain a free download on □ www.pdfvce.com □ □JN0-364 Exam Cost
- 2026 Trustable 100% Free JN0-364 – 100% Free Reliable Exam Pattern | Service Provider Routing and Switching, Specialist (JNCIS-SP) Examcollection Dumps □ Open 《 www.vce4dumps.com 》 enter ➡ JN0-364 □ and obtain a free download □Best JN0-364 Preparation Materials
- HOT Reliable JN0-364 Exam Pattern: Service Provider Routing and Switching, Specialist (JNCIS-SP) - High Pass-Rate Juniper JN0-364 Examcollection Dumps □ Immediately open **【** www.pdfvce.com **】** and search for ✓ JN0-364 □✓□ to obtain a free download □Reliable JN0-364 Exam Preparation
- Valid Reliable JN0-364 Exam Pattern - The Best Juniper Certification Training - Authoritative Juniper Service Provider Routing and Switching, Specialist (JNCIS-SP) □ Search for ➡ JN0-364 □□□ and download it for free on ➤ www.practicevce.com □ website □Valid JN0-364 Exam Sims
- www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, myportal.utt.edu.tt, feiscourses.com, www.stes.tyc.edu.tw, Disposable vapes