

F5CAB2 Study Materials and BIG-IP Administration Data Plane Concepts (F5CAB2) Test Dumps - F5CAB2 PDF Guide - Pass4Test

The pass rate is 98.75%, and we will ensure you pass the exam if you buy F5CAB2 exam torrent from us. Since the high pass rate, we have received many good feedbacks from candidates. What's more, we pass guarantee and money back guarantee if you fail to pass the exam after purchasing F5CAB2 Exam Torrent from us. We have online and offline chat service stuff, and they possess the professional knowledge about the F5CAB2 exam dumps, if you have any questions, just have a chat with them.

F5 F5CAB2 Exam Syllabus Topics:

Topic	Details
Topic 1	<ul style="list-style-type: none">Define ADC application objects: This domain covers ADC basics including application objects, load balancing methods, server selection, and key ADC features and benefits.
Topic 2	<ul style="list-style-type: none">Explain high availability (HA) concepts: This domain addresses HA concepts including integrity methods, implementation approaches, and advantages of high availability configurations.
Topic 3	<ul style="list-style-type: none">Determine expected traffic behavior based on configuration: This domain focuses on predicting traffic behavior based on persistence, processing order, object status, egress IPs, and connection rate limits.
Topic 4	<ul style="list-style-type: none">Identify the different virtual server types: This domain covers BIG-IP virtual server types: Standard, Forwarding, Stateless, Reject, Performance Layer 4, and Performance HTTP.
Topic 5	<ul style="list-style-type: none">Explain the relationship between interfaces, trunks, VLANs, self-IPs, routes and their status statistics: This domain covers BIG-IP networking components including interfaces, trunks, VLANs, self-IPs, and routes, their dependencies and status, plus predicting traffic paths and egress IPs.

>> [F5CAB2 Valid Study Guide](#) <<

F5CAB2 Exam Preparation & F5CAB2 Study Guide & F5CAB2 Best Questions

We also update frequently to guarantee that the client can get more learning F5CAB2 exam resources and follow the trend of the times. So if you use our F5CAB2 study materials you will pass the test with high success probability. And our F5CAB2 learning guide is high-effective. If you study with our F5CAB2 practice engine for 20 to 30 hours, then you can pass the exam with confidence and achieve the certification as well.

F5 BIG-IP Administration Data Plane Concepts (F5CAB2) Sample Questions (Q43-Q48):

NEW QUESTION # 43

An organization needs to deploy an HTTP application on a BIG-IP system. The requirements specify hardware acceleration to enhance performance, while HTTP optimization features are not required.

What type of virtual server and associated protocol profile should be used to meet these requirements?

(Choose one answer)

- A. Type: Stateless Protocol Profile: fastL4
- B. Type: Standard Protocol Profile: tcp-wan-optimized
- **C. Type: Performance (Layer 4) Protocol Profile: fastL4**
- D. Type: Performance (HTTP) Protocol Profile: fasthttp

Answer: C

Explanation:

To select the correct virtual server type, an administrator must balance the need for L7 intelligence versus raw throughput and hardware offloading:

* Performance (Layer 4) Virtual Server: This type is designed for maximum speed. It uses the fastL4 profile, which allows the BIG-IP system to leverage the ePVA (Embedded Packet Velocity Accelerator) hardware chip. When a Performance (L4) virtual server is used, the system processes packets at the network layer (L4) without looking into the application payload (L7). This fulfills the requirement for hardware acceleration and avoids the overhead of HTTP optimization features, which are not needed in this scenario.

* Performance (HTTP) Virtual Server: While fast, this type uses the fasthttp profile to provide some L7 awareness and optimization (like header insertion or small-scale multiplexing). Since the requirement specifically states HTTP optimization is not required, the L4 variant is more efficient.

* Standard Virtual Server: This is a full-proxy type. While it offers the most features (SSL offload, iRules, Compression), it processes traffic primarily in the TMOS software layer (or via high-level hardware assistance), which is "slower" than the pure hardware switching path of the Performance (L4) type.

* Stateless Virtual Server: This is typically used for specific UDP/ICMP traffic where the system does not need to maintain a connection table. It is not appropriate for standard HTTP (TCP) applications requiring persistent sessions or stateful load balancing. By choosing Performance (Layer 4) with the fastL4 profile, the organization ensures that the traffic is handled by the hardware acceleration chips, providing the lowest latency and highest throughput possible for their HTTP application.

NEW QUESTION # 44

Refer to the exhibit.

The network team creates a new VLAN on the switches. The BIG-IP Administrator creates a new VLAN and a Self IP on the BIG-IP device, but the servers on the new VLAN are NOT reachable from the BIG-IP device.

Which action should the BIG-IP Administrator take to resolve this issue? (Choose one answer)

- **A. Assign a physical interface to the new VLAN**
- B. Set Port Lockdown of the Self IP to Allow All
- C. Change Auto Last Hop to enabled
- D. Create a Floating Self IP address

Answer: A

Explanation:

For BIG-IP to send or receive traffic on a VLAN, that VLAN must be bound to a physical interface or a trunk. Creating a VLAN object and a Self IP alone is not sufficient to establish data-plane connectivity.

From the exhibit:

* The VLAN (vlan_1033) exists and has a tag defined.

* A Self IP is configured and associated with the VLAN.

* However, traffic cannot reach servers on that VLAN.

This indicates a Layer 2 connectivity issue, not a Layer 3 or HA issue.

Why assigning a physical interface fixes the problem:

* BIG-IP VLANs do not carry traffic unless they are explicitly attached to:

* A physical interface (e.g., 1.1), or

* A trunk

* Without an interface assignment, the VLAN is effectively isolated and cannot transmit or receive frames, making servers unreachable regardless of correct IP addressing.

Why the other options are incorrect:

* A. Set Port Lockdown to Allow AllPort Lockdown controls which services can be accessed on the Self IP (management-plane access), not whether BIG-IP can reach servers on that VLAN.

* B. Change Auto Last Hop to enabled Auto Last Hop affects return traffic routing for asymmetric paths. It does not fix missing Layer 2 connectivity.

* D. Create a Floating Self IP address Floating Self IPs are used for HA failover. They do not resolve reachability issues on a single device when the VLAN itself is not connected to an interface.

Conclusion:

The servers are unreachable because the VLAN has no physical interface assigned. To restore connectivity, the BIG-IP Administrator must assign a physical interface (or trunk) to the VLAN, enabling Layer 2 traffic flow.

NEW QUESTION # 45

Refer to the exhibit.

During a planned upgrade to a BIG-IP HA pair running Active/Standby, an outage to application traffic is reported shortly after the Active unit is forced to Standby. Reverting the failover resolves the outage. What should the BIG-IP Administrator modify to avoid an outage during the next failover event? (Choose one answer)

- A. The Interface on the Standby device to 1.1
- B. The Tag value on the Active device
- C. The interface on the Active device to 1.1
- D. The Tag value on the Standby device

Answer: A

Explanation:

In an Active/Standby BIG-IP design, application availability during failover depends on both units having equivalent data-plane connectivity for the networks that carry application traffic. Specifically:

* VLANs are bound to specific interfaces (and optionally VLAN tags).

* Floating self IPs / traffic groups move to the new Active device during failover.

* For traffic to continue flowing after failover, the new Active device must have the same VLANs available on the correct interfaces that connect to the upstream/downstream networks.

What the symptom tells you:

- * Traffic works when Device A is Active
- * Traffic fails when Device B becomes Active
- * Fallback immediately restores traffic

This pattern strongly indicates the Standby unit does not have the VLAN connected the same way (wrong physical interface assignment), so when it becomes Active, it owns the floating addresses but cannot actually pass traffic on the correct network segment.

Why Interface mismatch is the best match:

- * If the Active unit is already working, its interface mapping is correct.
- * The fix is to make the Standby unit's VLAN/interface assignment match the Active unit.
- * That corresponds to changing the Standby device interface to 1.1.

Why the Tag options are less likely here (given the choices and the exhibit intent):

* Tag issues can also break failover traffic, but the question/options are clearly driving toward the classic HA requirement: consistent VLAN-to-interface mapping on both devices so the data plane remains functional after the traffic group moves.

Conclusion: To avoid an outage on the next failover, the BIG-IP Administrator must ensure the Standby device uses the same interface (1.1) for the relevant VLAN(s) that carry the application traffic, so when it becomes Active it can forward/receive traffic normally.

NEW QUESTION # 46

A BIG-IP Administrator configures remote authentication and needs to make sure that users can still log in even when the remote authentication server is unavailable. Which action should the BIG-IP Administrator take in the remote authentication configuration to meet this requirement?

- A. Enable the Fallback to Local option

- B. Configure a second remote user directory
- C. Configure a remote role group
- D. Set partition access to "All"

Answer: A

Explanation:

The BIG-IP system supports various remote authentication methods like LDAP, Active Directory, and RADIUS.

* Fallback to Local: This is a specific security and availability feature within the System > Users > Authentication configuration.

* Redundancy: When "Fallback to Local" is enabled, the BIG-IP will first attempt to authenticate a user against the configured remote server. If that remote server is unreachable or fails to respond, the system will then check its internal Local User database for credentials.

* Administrative Access: This is standard practice for the "admin" or emergency accounts to ensure the system remains accessible even if the corporate directory service (e.g., AD) is offline.

NEW QUESTION # 47

Refer to the exhibit.

□ During a planned upgrade to a BIG-IP HA pair running Active/Standby, an outage to application traffic is reported shortly after the Active unit is forced to Standby. Reverting the failover resolves the outage. What should the BIG-IP Administrator modify to avoid an outage during the next failover event? (Choose one answer)

- A. The Interface on the Standby device to 1.1
- B. The Tag value on the Active device
- C. The interface on the Active device to 1.1
- D. The Tag value on the Standby device

Answer: A

Explanation:

Comprehensive and Detailed Explanation (BIG-IP Administration - Data Plane Concepts):

In an Active/Standby BIG-IP design, application availability during failover depends on both units having equivalent data-plane connectivity for the networks that carry application traffic. Specifically:

VLANs are bound to specific interfaces (and optionally VLAN tags).

Floating self IPs / traffic groups move to the new Active device during failover.

For traffic to continue flowing after failover, the new Active device must have the same VLANs available on the correct interfaces that connect to the upstream/downstream networks.

What the symptom tells you:

Traffic works when Device A is Active

Traffic fails when Device B becomes Active

Failback immediately restores traffic

This pattern strongly indicates the Standby unit does not have the VLAN connected the same way (wrong physical interface assignment), so when it becomes Active, it owns the floating addresses but cannot actually pass traffic on the correct network segment.

Why Interface mismatch is the best match:

If the Active unit is already working, its interface mapping is correct.

The fix is to make the Standby unit's VLAN/interface assignment match the Active unit.

That corresponds to changing the Standby device interface to 1.1.

Why the Tag options are less likely here (given the choices and the exhibit intent):

Tag issues can also break failover traffic, but the question/options are clearly driving toward the classic HA requirement: consistent VLAN-to-interface mapping on both devices so the data plane remains functional after the traffic group moves.

Conclusion: To avoid an outage on the next failover, the BIG-IP Administrator must ensure the Standby device uses the same interface (1.1) for the relevant VLAN(s) that carry the application traffic, so when it becomes Active it can forward/receive traffic normally.

NEW QUESTION # 48

.....

Our expert team will check the update F5CAB2 learning prep and will send the update version automatically to the clients if there is the update. We provide free updates for our worthy customer within one year after purchase. So the clients can enjoy the

convenience of our wonderful service and the benefits brought by our superior F5CAB2 Guide materials. What is more, if you want to buy the F5CAB2 exam questions one year later, you can enjoy 50% discounts off.

Reliable Study F5CAB2 Questions: <https://www.pass4test.com/F5CAB2.html>