BETFHACD-301E B FHEF & Appian Appian
Certified Lead Developer

PDFExamDumps & B 44 &t A TR K5 A R A IR, BERMITE K ERRRES 4 — k@R
ACD-301 #£&, EHEAELEMBKER ACD-301 ZRRE, HEHCHBELERRERNRE, HECEENERK
FEE RS ARRRBESEMNTER. EEHHBRAEENERER Appian ACD-301 %5 EEREMNER
RERRBEREAE.

WREAEREER, TOUREEREETHYE, SAERE FHENBRET, EPEERE ACD-301 5k, #LlLE
PDFExamDumps ACD-301 @), BERRE, LUEFLE@ER, WMES Appan WREES. RMEAERE
BEACD-301EEEF, #HEER—FoEARNERRY, MAZFERN—KBERE, WET —RIRE
SRBRFOMRRE, BEHREBL MR B ZIUEMHRE.

>> ACD-30EEE HE M <<

Appian ACD-30175 & J§ & ACD-301HI3K 51 %

HEFEBACD-301RBFER? HOERGHHM, RERXBIRANEEEE ER . RATIR LA Appian ACD-301%
BN, BEE, RREERERRTNIEE, BRERRINOERE. R % E T 8 100%%E# I ACD-301
EHEER, RIPTE K AppianE B2 RN, ERCEAENAL . BEREBISYHARBENESR, Tk
#h [PDFExamDumps#8 3k, 78 HX 5 # 1 ACD-301 78 & 5% F hiv A= IS !

B P Appian Certification Program ACD-301 4 & 2% 5L & (Q42-Q47):

P& #42

You need to design a complex Appian integration to calla RESTful API. The RESTful API will be used to update a case ina
customer’s legacy system

What are three prerequisites for designing the integration?

A. Understand the content of the expected body, including each field type and their limits.

B. Understand the business rules to be applied to ensure the business logic of the data.

C. Understand the different error codes managed by the API and the process of error handling in Appian.
D. Understand whether this integration will be used in an interface or in a process model.

E. Define the HTTP method that the integration will use.

Z®: ACE

BB -

Comprehensive and Detailed In-Depth Explanation:

As an Appian Lead Developer, designing a complex integration to a RESTful API for updating a case in a legacy system requires a
structured approach to ensure reliability, performance, and alignment with business needs. The integration involves sending a JSON

https://tw.fast2test.com/ACD-301-practice-test.html
https://www.newdumpspdf.com/ACD-301-exam-new-dumps.html
https://www.pdfexamdumps.com/ACD-301_valid-braindumps.html
https://www.newdumpspdf.com/ACD-301-practice-test.html

payload (inplied by the context) and handling responses, so the focus is on technical and functional prerequisites. Let's evaluate each
option:

A . Define the HTTP method that the integration will use:

This is a primary prerequisite. RESTful APIs use HTTP methods (e.g., POST, PUT, GET) to define the operation-here, updating a
case likely requires PUT or POST. Appian's Connected System and Integration objects require specifying the method to configure
the HTTP request correctly. Understanding the API's method ensures the integration aligns with its design, making this essential for
design. Appian's documentation emphasizes choosing the correct HITTP method as a foundational step.

B . Understand the content of the expected body, including each field type and their limits:

This is also critical. The JSON payload for updating a case includes fields (e.g,, text, dates, numbers), and the API expects a
specific structure with field types (e.g., string, integer) and limits (e.g., max length, size constraints). In Appian, the Integration object
requires a dictionary or CDT to construct the body, and mismatches (e.g., wrong types, exceeding limits) cause errors (e.g,, 400
Bad Request). Appian's best practices mandate understanding the API schema to ensure data compatibility, making this a key
prerequisite.

C . Understand whether this integration will be used in an interface or in a process model:

While knowing the context (interface vs. process model) is useful for design (e.g,, synchronous vs. asynchronous calls), it's not a
prerequisite for the integration itself-it's a usage consideration. Appian supports integrations in both contexts, and the integration's
design (e.g., HTTP method, body) remains the same. This is secondary to technical API details, so it's not among the top three
prerequisites.

D . Understand the different error codes managed by the API and the process of error handling in Appian:

This is essential. RESTful APIs return HTTP status codes (e.g., 200 OK, 400 Bad Request, 500 Internal Server Error), and the
customer's API likely documents these for failure scenarios (e.g,, invalid data, server issues). Appian's Integration objects can handle
errors via error mappings or process models, and understanding these codes ensures robust error handling (e.g., retry logic, user
notifications). Appian's documentation stresses error handling as a core design element for reliable integrations, making this a primary
prerequisite.

E . Understand the business rules to be applied to ensure the business logic of the data:

While business rules (e.g., validating case data before sending) are important for the overall application, they aren't a prerequisite for
designing the integration itself-they're part of the application logic (e.g., process model or interface). The integration focuses on
technical interaction with the API, not business validation, which can be handled separately in Appian. This is a secondary concern,
not a core design requirement for the integration.

Conclusion: The three prerequisites are A (define the HTTP method), B (understand the body content and limits), and D (understand
error codes and handling). These ensure the integration is technically sound, compatible with the API, and resilient to errors-critical
for a complex RESTful API integration in Appian.

Appian Documentation: "Designing REST Integrations" (HTTP Methods, Request Body, Frror Handling).

Appian Lead Developer Certification: Integration Module (Prerequisites for Complex Integrations).

Appian Best Practices: "Building Reliable API Integrations" (Payload and Error Management).

To design a complex Appian integration to call a RESTful API, you need to have some prerequisites, such as:

Define the HTTP method that the integration will use. The HTTP method is the action that the mntegration will perform on the API,
such as GET, POST, PUT, PATCH, or DELETE. The HTTP method determines how the data will be sent and received by the
API, and what kind of response will be expected.

Understand the content of the expected body, including each field type and their limits. The body is the data that the integration will
send to the API, or receive from the API, depending on the HTTP method. The body can be in different formats, such as JSON,
XML, or formdata. You need to understand how to structure the body according to the API specification, and what kind of data
types and values are allowed for each field.

Understand the different error codes managed by the API and the process of error handling in Appian. The error codes are the
status codes that indicate whether the API request was successful or not, and what kind of problem occurred if not. The error codes
can range from 200 (OK) to 500 (Internal Server Error), and each code has a different meaning and implication. You need to
understand how to handle different error codes in Appian, and how to display meaningful messages to the user or log them for
debugging purposes.

The other two options are not prerequisites for designing the integration, but rather considerations for implementing .

Understand whether this integration will be used in an interface or in a process model. This is not a prerequisite, but rather a decision
that you need to make based on your application requirements and design. You can use an integration either in an interface or in a
process model, depending on where you need to call the APT and how you want to handle the response. For exanple, if you need
to update a case in real-time based on user input, you may want to use an integration in an interface. If you need to update a case
periodically based on a schedule or an event, you may want to use an integration in a process model.

Understand the business rules to be applied to ensure the business logic of the data. This is not a prerequisite, but rather a part of
your application logic that you need to implement after designing the integration. You need to apply business rules to validate,
transform, or enrich the data that you send or receive fromthe API, according to your business requirements and logic. For
example, you may need to check if the case status is valid before updating it in the legacy system, or you may need to add some
additional information to the case data before displaying it in Appian.

& #43

You are running an inspection as part of the first deployment process from TEST to PROD. You receive a notice that one of your
objects will not deploy because it is dependent on an object from an application owned by a separate team.

‘What should be your next step?

¢ A Pusha functionally viable package to PROD without the dependencies, and plan the rest of the deployment accordingly
with the other teanms constraints.

¢ B. Create your own object with the same code base, replace the dependent object in the application, and deploy to PROD.

¢ (. Halt the production deployment and contact the other team for guidance on promoting the object to PROD.

¢ D. Check the dependencies of the necessary object. Deploy to PROD if there are few dependencies and it is low risk.

ER:. C

R -

Comprehensive and Detailed In-Depth Explanation:

As an Appian Lead Developer, managing a deployment from TEST to PROD requires careful handling of dependencies, especially
when objects from another team's application are nvolved. The scenario describes a dependency issue during deployment, signaling
aneed for collaboration and governance. Let's evaluate each option:

A . Create your own object with the same code base, replace the dependent object in the application, and deploy to PROD:

This approach involves duplicating the object, which introduces redundancy, maintenance risks, and potential version control issues.
It violates Appian's governance principles, as objects should be owned and managed by their respective teams to ensure consistency
and avoid conflicts. Appian's deployment best practices discourage duplicating objects unless absolutely necessary, making this an
unsustainable and risky solution.

B . Halt the production deployment and contact the other team for guidance on promoting the object to PROD:

This is the correct step. When an object from another application (owned by a separate team) is a dependency, Appian's
deployment process requires coordination to ensure both applications' objects are deployed in sync. Halting the deployment
prevents partial deployments that could break fumctionality, and contacting the other team aligns with Appian's collaboration and
governance guidelines. The other team can provide the necessary object version, adjust their deployment timeline, or resolve the
dependency, ensuring a stable PROD environment.

C . Check the dependencies of the necessary object. Deploy to PROD if there are few dependencies and it is low risk:

This approach risks deploying an incomplete or unstable application if the dependency isn't fully resolved. Even with "few
dependencies" and "low risk," deploying without the other team's object could lead to runtime errors or broken functionality in
PROD. Appian's documentation emphasizes thorough dependency management during deployment, requiring all objects (including
those from other applications) to be promoted together, making this risky and not recommended.

D . Push a functionally viable package to PROD without the dependencies, and plan the rest of the deployment accordingly with the
other teanm's constraints:

Deploying without dependencies creates an incomplete solution, potentially leaving the application non-finctional or unstable in
PROD. Appian's deployment process ensures all dependencies are included to maintain application integrity, and partial
deployments are discouraged unless explicitly planned (e.g., phased rollouts). This option delays resolution and increases risk,
contradicting Appian's best practices for Production stability.

Conclusion: Halting the production deployment and contacting the other team for guidance (B) is the next step. It ensures proper
collaboration, aligns with Appian's governance model, and prevents deployment errors, providing a safe and effective resolution.
Appian Documentation: "Deployment Best Practices" (Managing Dependencies Across Applications).

Appian Lead Developer Certification: Application Management Module (Cross-Team Collaboration).

Appian Best Practices: "Handling Production Deployments" (Dependency Resolution).

FIRE #44

Youare asked to design a case management system for a client. In addition to storing some basic metadata about a case, one of the
client's requirements is the ability for users to update a case. The client would like any user in their organization of 500 people to be
able to make these updates. The users are all based in the company's headquarters, and there will be frequent cases where users are
attempting to edit the same case. The client wants to ensure no information is lost when these edits occur and does not want the
solution to burden their process administrators with any additional effort. Which data locking approach should you recommend?

A. Design a process report and query to determine who opened the edit form first.
B. Allow edits without locking the case CDI.

C. Add an @Version annotation to the case CDT to manage the locking,

D. Use the database to implement low-level pessimistic locking.

ER: C

i RE S «

Comprehensive and Detailed In-Depth Explanation:

The requirement involves a case management system where 500 users may simultaneously edit the same case, with a need to prevent
data loss and minimize administrative overhead. Appian's data management and concurrency control strategies are critical here,
especially when integrating with an underlying database.

Option C (Add an @ Version annotation to the case CDT to manage the locking):

This is the recommended approach. In Appian, the (@ Version annotation on a Custom Data Type (CDT) enables optimistic locking,
a lightweight concurrency control mechanism. When a user updates a case, Appian checks the version number of the CDT instance.
Ifanother user has modified it in the meantime, the update fails, prompting the user to refresh and reapply changes. This prevents
data loss without requiring manual intervention by process administrators. Appian's Data Design Guide recommends (@ Version for
scenarios with high concurrency (e.g., 500 users) and frequent edits, as it leverages the database's native versioning (e.g., in MySQL
or PostgreSQL) and integrates seamlessly with Appian's process models. This aligns with the client's no-burden requirement.
Option A (Allow edits without locking the case CDI):

This is risky. Without locking, simultaneous edits could overwrite each other, leading to data loss-a direct violation of the client's
requirement. Appian does not recommend this for collaborative environments.

Option B (Use the database to implement low-level pessimistic locking):

Pessimistic locking (e.g,, using SELECT ... FOR UPDATE in MySQL) locks the record during the edit process, preventing other
users from modifying it until the lock is released. While effective, it can lead to deadlocks or performance bottlenecks with 500
users, especially if edits are frequent. Additionally, managing this at the database level requires custom SQL and increases
admmistrative effort (e.g., monitoring locks), which the client wants to avoid. Appian prefers higher-level solutions like @ Version
over low-level database locking,

Option D (Design a process report and query to determine who opened the edit form first):

This is impractical and inefficient. Building a custom report and query to track form opens adds complexity and administrative
overhead. It doesn't inherently prevent data loss and relies on manual resolution, conflicting with the client's requirements.

The (@Version annotation provides a robust, Appian-native solution that balances concurrency, data integrity, and ease of
maintenance, making it the best fit.

FIRE #45

On the latest Health Check report from your Cloud TEST environment utilizing a MongoDB add-on, you note the following findings:
Category: User Experience, Description: # of slow query rules, Risk: High Category: User Experience, Description: # of slow write
to data store nodes, Risk: High Which three things might you do to address this, without consulting the business?

¢ A. Reduce the size and complexity of the inputs. If you are passing in a list, consider whether the data model can be
redesigned to pass single values instead.

B. Optimize the database execution using standard database performance troubleshooting methods and tools (such as query
execution plans).

C. Use smaller CDTs or limit the fields selected in a!queryEntity().

D. Reduce the batch size for database queues to 10.

E. Optimize the database execution. Replace the view with a materialized view.

BER: ABC

i RE B«

Comprehensive and Detailed In-Depth Explanation:

The Health Check report indicates high-risk issues with slow query rules and slow writes to data store nodes in a MongoDB-
mtegrated Appian Cloud TEST environment. As a Lead Developer, you can address these performance bottlenecks without
business consultation by focusing on technical optimizations within Appian and MongoDB. The goal is to improve user experience by
reducing query and write latency.

Option B (Optimize the database execution using standard database performance troubleshooting methods and tools (such as query
execution plans)):

This is a critical step. Slow queries and writes suggest inefficient database operations. Using MongoDB's explain() or equivalent
tools to analyze execution plans can identify missing indices, suboptimal queries, or full collection scans. Appian's Performance
Tuning Guide recommends optimizing database interactions by adding indices on frequently queried fields or rewriting queries (e.g.,
using projections to limit returned data). This directly addresses both slow queries and writes without business nput.

Option C (Reduce the size and complexity of the inputs. If you are passing in a list, consider whether the data model can be
redesigned to pass single values instead):

Large or complex inputs (e.g., large arrays in alqueryEntity() or write operations) can overwhelm MongoDB, especially in Appian's
data store integration. Redesigning the data model to handle single values or smaller batches reduces processing overhead. Appian's
Best Practices for Data Store Design suggest normalizing data or breaking down lists into manageable units, which can mitigate slow
writes and improve query performance without requiring business approval.

Option E (Use smaller CDTs or limit the fields selected in alqueryEntity()): Appian Custom Data Types (CDTs) and a!queryEntity()
calls that return excessive fields can increase data transfer and processing time, contributing to slow queries. Limiting fields to only
those needed (e.g., using fetchTotalCount selectively) or using smaller CDTs reduces the load on MongoDB and Appian's engine.
This optimization is a technical adjustment within the developer's control, aligning with Appian's Query Optimization Guidelines.
Option A (Reduce the batch size for database queues to 10):

While adjusting batch sizes can help with write performance, reducing it to 10 without analysis might not address the root cause and
could slow down legitimate operations. This requires testing and potentially business input on acceptable performance trade-offs,
making it less immediate.

Option D (Optimize the database execution. Replace the view with a materialized view):

Materialized views are not natively supported in MongoDB (unlike relational databases like PostgreSQL), and Appian's MongoDB
add-on relies on collection-based storage. Implementing this would require significant redesign or custom aggregation pipelines,
which may exceed the scope of a unilateral technical fix and could impact business logic.

These three actions (B, C, E) leverage Appian and MongoDB optimization techniques, addressing both query and write
performance without altering business requirements or processes.

The three things that might help to address the findings of the Health Check report are:

B . Optimize the database execution using standard database performance troubleshooting methods and tools (such as query
execution plans). This can help to identify and eliminate any bottlenecks or inefficiencies in the database queries that are causing slow
query rules or slow write to data store nodes.

C . Reduce the size and complexity of the inputs. If you are passing in a list, consider whether the data model can be redesigned to
pass single values instead. This can help to reduce the amount of data that needs to be transferred or processed by the database,
which can improve the performance and speed of the queries or writes.

E . Use smaller CDTs or limit the fields selected in a!queryEntity(). This can help to reduce the amount of data that is returned by the
queries, which can improve the performance and speed of the rules that use them

The other options are incorrect for the following reasons:

A . Reduce the batch size for database queues to 10. This might not help to address the findings, as reducing the batch size could
increase the number of transactions and overhead for the database, which could worsen the performance and speed of the queries
or writes.

D . Optimize the database execution. Replace the new with a materialized view. This might not help to address the findings, as
replacing a view with a materialized view could increase the storage space and maintenance cost for the database, which could affect
the performance and speed of the queries or writes. Verified Appian Documentation, section "Performance Tuning'.

Below are the corrected and formatted questions based on your mput, including the analysis of the provided image. The answers are
100% verified per official Appian Lead Developer documentation and best practices as of March 01, 2025, with comprehensive
explanations and references provided.

FIRE #46

Your team has deployed an application to Production with an underperforming view. Unexpectedly, the production data is ten times
that of what was tested, and you must remediate the issue. What is the best option you can take to mitigate their performance
concerns?

A. Create a materialized view or table.

B. Bypass Appian's query rule by calling the database directly with a SQL statement.
C. Introduce a data management policy to reduce the volume of data.

D. Create a table which is loaded every hour with the latest data.

BEER: A

fE R A«

Comprehensive and Detailed In-Depth Explanation:

As an Appian Lead Developer, addressing performance issues in production requires balancing Appian's best practices, scalability,
and maintainability. The scenario involves an underperforming view due to a significant increase in data volume (ten times the tested
amount), necessitating a solution that optimizes performance while adhering to Appian's architecture. Let's evaluate each option:

A . Bypass Appian's query rule by calling the database directly with a SQL statement:

This approach involves circumventing Appian's query rules (e.g., alqueryEntity) and directly executing SQL against the database.
While this might offer a quick performance boost by avoiding Appian's abstraction layer, it violates Appian's core design principles.
Appian Lead Developer documentation explicitly discourages direct database calls, as they bypass security (e.g., Appian's row-level
security), auditing, and portability features. This introduces maintenance risks, dependencies on database-specific logic, and potential
production instability-making it an unsustainable and non-recommended solution.

B. Create a table which is loaded every hour with the latest data:

This suggests implementing a staging table updated hourly (e.g., via an Appian process model or ETL process). While this could
reduce query load by pre-aggregating data, it ntroduces latency (data is only fresh hourly), which may not meet real-time

requirements typical in Appian applications (e.g., a customer-facing view). Additionally, mamntaining an hourly refresh process adds
complexity and overhead (e.g., scheduling, monitoring). Appian's documentation favors more efficient, real-time solutions over
periodic refreshes unless explicitly required, making this less optimal for immediate performance remediation.

C . Create a materialized view or table:

This is the best choice. A materialized view (or table, depending on the database) pre-computes and stores query resuilts,
significantly improving retrieval performance for large datasets. In Appian, you can integrate a materialized view with a Data Store
Entity, allowing a!queryEntity to fetch data efficiently without changing application logic. Appian Lead Developer training emphasizes
leveraging database optimizations like materialized views to handle large data volumes, as they reduce query execution time while
keeping data consistent with the source (via periodic or triggered refreshes, depending on the database). This aligns with Appian's
performance optimization guidelines and addresses the tenfold data increase effectively.

D . Introduce a data management policy to reduce the volume of data:

This nvolves archiving or purging data to shrink the dataset (e.g., moving old records to an archive table). While a long-term data
management policy is a good practice (and supported by Appian's Data Fabric principles), it doesn't immediately remediate the
performance issue. Reducing data volume requires business approval, policy design, and implementation-delaying resolution. Appian
documentation recommends combining such strategies with technical fixes (like C), but as a standalone solution, it's insufficient for
urgent production concerns.

Conclusion: Creating a materialized view or table (C) is the best option. It directly mitigates performance by optimizing data retrieval,
integrates seamlessly with Appian's Data Store, and scales for large datasets-all while adhering to Appian's recommended practices.
The view can be refreshed as needed (e.g., via database triggers or schedules), balancing performance and data freshness. This
approach requires collaboration with a DBA to implement but ensures a robust, Appian-supported solution.

Appian Documentation: "Performance Best Practices" (Optimizing Data Queries with Materialized Views).

Appian Lead Developer Certification: Application Performance Module (Database Optimization Techniques).

Appian Best Practices: "Working with Large Data Volumes in Appian” (Data Store and Query Performance).

PR #47

HERG BEERTEMZAMES, FON/MHEERLREPEEPRERIR, BEEBBE. N4 REEER
B, HERE—M@, IR HPDFExamDumps Appianffl ACD-301% 3% 31 &k . BRBMBEMITEERES,
FEMREIREE EN R E,

ACD-3013% & & ¥5 : hitps//www.pdfexamdumps.con’ACD-301_ valid-braindumps. html

0875 B — #0% £ 9°T DL4 BT I Appian ACD-30 %8 ACD-301 6 ESURE SUB, RMIIPDESUE A
2 HMACD-3017% E K JFRE 7 S A%. Appian ACD-301%E & IE ACD-3015 & IR & it /48 M ACD-301°5 E & IR
RISV ¥ 7EAR VR, PDFExamDurpsiE# 03703t B Appian ACD-30 SRS RINHIIIRER, BULR BRI
OSYMMEDLNE, FiH L 2R M Appian ACD-301BURE:E ORHI 82k, AOHERE S0 LA B IR MRS, (R 25— Ol
8, Appian ACD-301 B T 37 &l H0SHREL S 2 YES, HRE T E A

FRE RN ARG, RNEEMHBENRERE, EEFTE— SEESHT S 35 H 1 Appian ACD-301
Appian Certification Prograne® ;AR &, FRAM K PDF#AE & 14 E ¥ Appian Certification Programa® 7% 5 #%. Appian Appian
Certification ProgramiE /48 ¥4 Appian Certification Programifllid 8 # £ I FEAR B VB .

— Wi I ACD-301 78 Ji 56 31 & sl A1 B Appians? 58 35 5l - B F i Appian
Appian Certified Lead Developer

PDFExamDumps#EA 5 3#7 1§ 3 Appian ACD-30158:8 5 A K3 I EORE, BLEL R A5 SAIROS Yot btk Fr i s B AP
Appian ACD-30 B FE 2 B BB E A4, #ME R BT E IR, MEREE—JGER, WRIRKEZZYES,
MBEAEERE.

B, RMBACD-301REEMER IR SRR, LR B AR =028 58 R, AP DA SR
T HIACD-301 PDF# H % A i op i) — L6 Jr (s] BOR R SR, AR R B MR E N FRI8H, RMBBIR
— &5 H OEEERNACD-30IFEMER, WLIRRRMBRRKEARDT

e Appian ACD-30138E % A2 B 57 [18 - AHE www.pdfexamdumps.com ¥ B 1638 & ACD-301 "% & T &
ACD-301 #3858

e ACD-301F%FNE [1 ACD-301% B & (| ACD-3015 5 8 [R4 HE (1 www.newdumpspdf.com [4T B
W R ACD-301 [14 & F#ACD-301 #4132 7%

o FRAEMACD-301 % i 58 37 & sl A 1 458 B0 8 % S 3R B UG B (M B VCERR A & 4% 0 B I ACD-301: - Appian
Certified Lead Developer [] » tw.fast2test.com «_L- = ACD-301 (4 & T & R F# RACD-301 EZE MK

https://www.newdumpspdf.com/ACD-301-exam-new-dumps.html
https://www.pdfexamdumps.com/ACD-301_valid-braindumps.html
https://www.newdumpspdf.com/ACD-301-exam-new-dumps.html
https://www.pdfexamdumps.com/ACD-301_valid-braindumps.html
https://www.pdc.edu/?URL=https%253a%252f%252fwww.pdfexamdumps.com%252fACD-301_valid-braindumps.html
https://tw.fast2test.com/ACD-301-premium-file.html

ACD-301% 5 FEA 2 [ARACD-301% 58 [ACD-30158 B & & (1 57 www.newdumpspdf.com [149
b4 E T #i= ACD-301 [I[][REEACD-301% 3 %5 48 5%

ACD-3017% /%38 () ACD-301EREM K [ACD-301 53 NE [= tw.fast2test.com <2 H = ACD-301
D00 B BT Bl SR AR AR ACD-301 5% R

#FIMACD-301EEEFHE M, & THACD-3017% 548 B 19 B R A8 2 (¥ Appians% & [SLEFTH (
www.newdumpspdf.com) {38 Z = ACD-301 (LA EL % & T #RACD-301 % N A

ACD-301:8H8/5 B [®FTACD-301% & [1 ACD-301 5B &N & 2> tw.fast2test.com [1 ACD-301
(RS R B T EACD-30150VE

ACD-301%5 3 N% (1 ACD-301%E &R [ACD-3015#% & [SLEI7E v/ www.newdumpspdf.com [1¢/ []
E#E> ACD-301 L34 & T #mHACD-3017%5 % &

ACD-301 851 % & (1 ACD-301% 3% &8 [ACD-30135R (1 > www.kaoguti.com [132t 4 & > ACD-
301 DRI ACD-301 % 3 5 48 BR

ACD-301IFAE & [ACD-30157E | ACD-30178 57 L) = www.newdumpspdf.com [k= ACD-301
HRBETRATHBACD-301BEHEM

ACD-3013% 8 (1 & ETACD-301EE & [1 ACD-301 8 E B & al (1w www.testpdfnet TAHHE 18 R v/
ACD-301 [lv C3f: 4 ¥ T #8ACD-30 1 5 558 % Al

myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportalutt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt,
myportal.utt.edu.tt, myportal.utt.edu.tt, myportalutt.edu.tt, myportal.utt.edu.tt, newtrainings.pollicy.org, myportal.utt.edu.tt,
myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportalutt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt,
myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, www.stes.tyc.edu.tw, www.stes.tyc.edu.tw, myportal.utt.edu.tt,
myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportalutt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt,
myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, www.stes.tyc.edu.tw, myportal.utt.edu.tt, myportal utt.edu.tt,
myportal.utt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt, myportalutt.edu.tt, myportal.utt.edu.tt, myportal.utt.edu.tt,
myportal.utt.edu.tt, myportalutt.edu.tt, Ins.coll 920.co.uk, www.stes.tyc.edu.tw, Disposable vapes

https://www.northwestu.edu/?URL=https%253a%252f%252fwww.pdfexamdumps.com%252fACD-301_valid-braindumps.html
https://tw.fast2test.com/ACD-301-practice-test.html
https://bbs.pku.edu.cn/v2/jump-to.php?url=https%253a%252f%252fwww.pdfexamdumps.com%252fACD-301_valid-braindumps.html
https://tw.fast2test.com/ACD-301-practice-test.html
https://www.wearestar.com/?s=ACD-301%25e8%2580%2583%25e8%25a9%25a6%25e5%2585%25a7%25e5%25ae%25b9%20%25f0%259f%2597%25ba%20ACD-301%25e8%2580%2583%25e9%25a1%258c%25e8%25b3%2587%25e8%25a8%258a%20%25f0%259f%25a5%2581%20ACD-301%25e6%259c%2580%25e6%2596%25b0%25e8%2580%2583%25e9%25a1%258c%20%25f0%259f%2591%2599%20%25e7%25ab%258b%25e5%258d%25b3%25e5%259c%25a8%25e2%259c%2594%20www.newdumpspdf.com%20%25ef%25b8%258f%25e2%259c%2594%25ef%25b8%258f%25e4%25b8%258a%25e6%2590%259c%25e5%25b0%258b%25e2%259e%25a4%20ACD-301%20%25e2%25ae%2598%25e4%25b8%25a6%25e5%2585%258d%25e8%25b2%25bb%25e4%25b8%258b%25e8%25bc%2589%25e6%259c%2580%25e6%2596%25b0ACD-301%25e8%2580%2583%25e5%258f%25a4%25e9%25a1%258c
https://www.kaoguti.com/ACD-301_exam-pdf.html
https://www.recreatieparkdeoudemaas.nl/?s=ACD-301%25e6%25b8%25ac%25e8%25a9%25a6%25e9%25a1%258c%25e5%25ba%25ab%20%25f0%259f%2592%25bb%20ACD-301%25e8%25a9%25a6%25e9%25a1%258c%20%25f0%259f%2594%2597%20ACD-301%25e8%25ad%2589%25e7%2585%25a7%25e8%2580%2583%25e8%25a9%25a6%20%25f0%259f%25a7%2597%20%25e2%259e%25a5%20www.newdumpspdf.com%20%25f0%259f%25a1%2584%25e4%25b8%258a%25e7%259a%2584%25e2%2587%259b%20ACD-301%20%25e2%2587%259a%25e5%2585%258d%25e8%25b2%25bb%25e4%25b8%258b%25e8%25bc%2589%25e5%258f%25aa%25e9%259c%2580%25e6%2590%259c%25e5%25b0%258bACD-301%25e8%2580%2583%25e9%25a1%258c%25e8%25b3%2587%25e8%25a8%258a
https://www.testpdf.net/ACD-301.html
https://myportal.utt.edu.tt/ICS/icsfs/0aeecb1d-71d3-405d-9b24-d9e0c612d29f.pdf?target=ef1d1214-b21f-4607-a205-9541f4dbc941
https://myportal.utt.edu.tt/ICS/icsfs/44ed69de-e506-4d30-9146-7e4eaa8498e8.pdf?target=257ecf2d-c5c6-4226-9dae-af5a748bd3eb
https://myportal.utt.edu.tt/ICS/icsfs/5a1fb480-cfdb-445a-a520-ac67fdc98b5e.pdf?target=67228965-9156-4db8-9dea-6ba88b6de39e
https://myportal.utt.edu.tt/ICS/icsfs/72928f70-e57e-4873-afb0-0339964cb960.pdf?target=da256313-8d0a-420f-81da-83054b396111
https://myportal.utt.edu.tt/ICS/icsfs/75227298-2dc1-4bcc-aecb-d0fcf43ed41b.pdf?target=4337b716-e52d-4d41-8f6c-92884384894e
https://myportal.utt.edu.tt/ICS/icsfs/8d3ee0d1-2881-4203-bd09-951c22e99c5a.pdf?target=970c7ffa-d3a0-427b-9410-18b7d312c691
https://myportal.utt.edu.tt/ICS/icsfs/bd864e05-2b3b-49ab-8fb6-76363b35e860.pdf?target=15cf03b3-e1d2-4bcd-9e30-360c381f974d
https://myportal.utt.edu.tt/ICS/icsfs/c0f147d2-f48e-4f0f-a005-4361b0e20452.pdf?target=a41a576b-decc-4026-9921-0d5b5ea55150
https://myportal.utt.edu.tt/ICS/icsfs/d1e0ecfa-7fd3-4dfb-9122-bce8ebb15c16.pdf?target=38904168-19a9-497d-967d-b59c87a3136e
https://myportal.utt.edu.tt/ICS/icsfs/da1f1847-c08c-4ce4-b4df-b2f088e1f5e0.pdf?target=cd2147d0-8b80-42d9-bbf1-19941d179cbe
https://newtrainings.pollicy.org/profile/paulcoo644
https://myportal.utt.edu.tt/ICS/icsfs/313bd4d5-fc0b-477d-b6b5-f593da6b654d.pdf?target=59e7a5af-a6f8-4a30-881d-c294ac0e24cd
https://myportal.utt.edu.tt/ICS/icsfs/3dcb2422-b5a5-4cc6-ad52-5f3d800c2c56.pdf?target=652ee136-1062-4810-8bf2-7943f202d83b
https://myportal.utt.edu.tt/ICS/icsfs/8b710142-24cf-4327-9711-a2d30bcd0ae6.pdf?target=b7c3f245-8d51-44bc-bfe5-4abaef7205df
https://myportal.utt.edu.tt/ICS/icsfs/a7330196-ad98-4ab8-a1a2-0e35d49f129d.pdf?target=cefc49be-32c3-47a3-953c-929026c7953a
https://myportal.utt.edu.tt/ICS/icsfs/aa9accb6-d6cd-4a65-9530-8ebd0d4d8a0a.pdf?target=5d8fb4bc-d265-437c-8ba9-de0f3ae85674
https://myportal.utt.edu.tt/ICS/icsfs/ad01c86c-cebc-48bb-b593-efe225e43e84.pdf?target=a64731cd-15f6-46bc-a06d-dc68e8938b4d
https://myportal.utt.edu.tt/ICS/icsfs/b31e1808-266b-4bac-ae54-2b11c3adb04e.pdf?target=23fe2844-d314-4ea8-9988-314cb80bffa7
https://myportal.utt.edu.tt/ICS/icsfs/bc2933ef-3f80-47ae-85a8-692edab1e737.pdf?target=41e48ebb-d983-406b-8485-77385fa3e07e
https://myportal.utt.edu.tt/ICS/icsfs/c139888c-6fc7-4237-873f-6f3abb963763.pdf?target=848c45bc-e757-4b7a-9d33-3ac06aedfa5f
https://myportal.utt.edu.tt/ICS/icsfs/e0d7f7b0-8d8e-4f7b-bd26-a0dc47501cbe.pdf?target=55a147c7-a7e9-454b-9934-a2a385d9e616
http://www.stes.tyc.edu.tw/xoops/modules/profile/userinfo.php?uid=3897442
http://www.stes.tyc.edu.tw/xoops/modules/profile/userinfo.php?uid=3897312
https://myportal.utt.edu.tt/ICS/icsfs/06ee29eb-264f-4bf9-8b6a-151a0482495d.pdf?target=864889ea-eda9-4184-b52f-c40d033b8129
https://myportal.utt.edu.tt/ICS/icsfs/1f622647-c924-474e-81e6-75d8e8950791.pdf?target=9c1e80c0-713a-4545-a78a-9aba38b9fcd7
https://myportal.utt.edu.tt/ICS/icsfs/47acb65d-8dbb-4044-8b78-eb020eb115a9.pdf?target=8f8e50a1-159e-4ced-bff8-61646f484f4e
https://myportal.utt.edu.tt/ICS/icsfs/5d1d126a-a61c-4106-9b36-6fd9a0b46e78.pdf?target=7282cb88-f3e1-45f1-abe8-570efd5a40c9
https://myportal.utt.edu.tt/ICS/icsfs/62671696-7a25-4eda-a6c6-2c953ee53765.pdf?target=672a00f1-c665-4353-985e-dd2a8d9b3600
https://myportal.utt.edu.tt/ICS/icsfs/71d1dfe0-ef3f-42aa-ac68-4d633cad72d3.pdf?target=3d73d421-e591-4b92-affe-16bfc4eb8084
https://myportal.utt.edu.tt/ICS/icsfs/87102e55-2098-4a35-aa2c-964fa7223911.pdf?target=dbff3751-c8a9-4850-a6f8-57fbe6ff3671
https://myportal.utt.edu.tt/ICS/icsfs/9cc08310-2336-4e23-ab01-735fffbe8c7c.pdf?target=c409ef10-96c3-45c2-a164-274d982c60b1
https://myportal.utt.edu.tt/ICS/icsfs/a5d1d17a-6302-4b55-b842-b41d11b647b2.pdf?target=771e5c76-16aa-4299-ba15-bbe3dc0159ff
https://myportal.utt.edu.tt/ICS/icsfs/f1dc454c-a43b-4315-958c-5dccc83cff8d.pdf?target=8349748f-c7dd-4b98-b9a0-b028ac9b8dab
http://www.stes.tyc.edu.tw/xoops/modules/profile/userinfo.php?uid=3897713
https://myportal.utt.edu.tt/ICS/icsfs/08ad007b-db69-400b-a0d3-49d7ad736f84.pdf?target=07aa9661-5ad6-4e7c-99c2-e611e25bab6b
https://myportal.utt.edu.tt/ICS/icsfs/29c2b387-2fa1-4ab0-b075-5fddba6bcbb4.pdf?target=7f923dd5-379c-4e1b-882d-21efe6ab2540
https://myportal.utt.edu.tt/ICS/icsfs/75ca37d3-8c9b-4a72-b002-05e0da6ab394.pdf?target=babe6f45-5508-4c7a-8e6f-c0e276a6d031
https://myportal.utt.edu.tt/ICS/icsfs/8acdd948-518b-427f-b0d4-e20c99f60013.pdf?target=c237573b-55ba-4a82-a99d-69d1e76399b3
https://myportal.utt.edu.tt/ICS/icsfs/b66b658f-cdd2-48f8-badf-52db7fe0cb7d.pdf?target=24014e08-ac60-4ce3-9bbb-a906c563ca07
https://myportal.utt.edu.tt/ICS/icsfs/d2e2fb5d-ed4f-4982-87d2-1887ec225ffb.pdf?target=37f5e4f2-0a24-4f84-8ae3-556d58e1eed7
https://myportal.utt.edu.tt/ICS/icsfs/df11a020-ba27-4cbc-a834-14fc8ed886dc.pdf?target=9805571b-594d-474a-8a10-8e9933bfb6a7
https://myportal.utt.edu.tt/ICS/icsfs/df476320-3e5d-4b78-a27d-333a73b4e611.pdf?target=eecdbc61-6cc6-4a33-ac35-f99df26622db
https://myportal.utt.edu.tt/ICS/icsfs/e3f1fe27-4ddd-4a86-9701-dda565a43d08.pdf?target=597f4852-5243-4a51-b03d-65a25511c93a
https://myportal.utt.edu.tt/ICS/icsfs/f23c5a7e-9e97-430e-885e-b5b2e66ec8f8.pdf?target=3699857b-64ed-4f16-b645-9640f274632d
https://lms.col1920.co.uk/profile/glenhun285
http://www.stes.tyc.edu.tw/xoops/modules/profile/userinfo.php?uid=3897654
https://frvape.com

