

Test Linux Foundation KCSA Passing Score | KCSA Download Pdf

Linux Foundation KCSA

Kubernetes and Cloud Native Security Associate (KCSA)

Get From Here: <https://www.dumps4less.com/KCSA-dumps-pdf.html>

QUESTION & ANSWERS

QUESTION: 1

Why is setting resource limits and requests for Kubernetes pods important to prevent internal Denial of Service scenarios?

- Option A : To optimize the network performance of the cluster
- Option B : To ensure even distribution of storage resources among pods
- Option C : To prevent a single pod from consuming excessive resources, impacting overall cluster stability
- Option D : To facilitate rapid scaling of applications in response to demand

Correct Answer: C

We have free demos of our KCSA learning braindumps for your reference, as in the following, you can download which KCSA exam materials demo you like and make a choice. Therefore, if you really have some interests in our KCSA Study Guide, then trust our professionalism, we will give you the most professional suggestions on the details of the KCSA practice quiz, no matter you buy it or not, just feel free to contact us!

Linux Foundation KCSA Exam Syllabus Topics:

Topic	Details
Topic 1	<ul style="list-style-type: none">• Kubernetes Cluster Component Security: This section of the exam measures the skills of a Kubernetes Administrator and focuses on securing the core components that make up a Kubernetes cluster. It encompasses the security configuration and potential vulnerabilities of essential parts such as the API server, etcd, kubelet, container runtime, and networking elements, ensuring each component is hardened against attacks.
Topic 2	<ul style="list-style-type: none">• Platform Security: This section of the exam measures the skills of a Cloud Security Architect and encompasses broader platform-wide security concerns. This includes securing the software supply chain from image development to deployment, implementing observability and service meshes, managing Public Key Infrastructure (PKI), controlling network connectivity, and using admission controllers to enforce security policies.

Topic 3	<ul style="list-style-type: none"> • Overview of Cloud Native Security: This section of the exam measures the skills of a Cloud Security Architect and covers the foundational security principles of cloud-native environments. It includes an understanding of the 4Cs security model, the shared responsibility model for cloud infrastructure, common security controls and compliance frameworks, and techniques for isolating resources and securing artifacts like container images and application code.
---------	---

>> Test Linux Foundation KCSA Passing Score <<

Reliable Test KCSA Passing Score Offer You The Best Download Pdf | Linux Foundation Kubernetes and Cloud Native Security Associate

To make preparation easier for you, Dumpcollection has created an Linux Foundation Kubernetes and Cloud Native Security Associate (KCSA) PDF format. This format follows the current content of the Linux Foundation Kubernetes and Cloud Native Security Associate (KCSA) real certification exam. The Linux Foundation Kubernetes and Cloud Native Security Associate (KCSA) dumps PDF is suitable for all smart devices making it portable. As a result, there are no place and time limits on your ability to go through Linux Foundation KCSA real exam questions pdf.

Linux Foundation Kubernetes and Cloud Native Security Associate Sample Questions (Q19-Q24):

NEW QUESTION # 19

Which label should be added to the Namespace to block any privileged Pods from being created in that Namespace?

- A. **pod-security.kubernetes.io/enforce: baseline**
- B. privileged: false
- C. pod.security.kubernetes.io/privileged: false
- D. privileged: true

Answer: A

Explanation:

* Kubernetes Pod Security Admission (PSA) enforces Pod Security Standards by applying labels on Namespaces.

* Exact extract (Kubernetes Docs - Pod Security Admission):

* "You can label a namespace with pod-security.kubernetes.io/enforce: baseline to enforce the Baseline policy."

* The baseline profile explicitly disallows privileged pods and other unsafe features.

* Why others are wrong:

* A & D: These labels do not exist in Kubernetes.

* B: Setting privileged: true would allow privileged pods, not block them

References:

Kubernetes Docs - Pod Security Admission: <https://kubernetes.io/docs/concepts/security/pod-security-admission/>

Kubernetes Docs - Pod Security Standards: <https://kubernetes.io/docs/concepts/security/pod-security-standards/>

NEW QUESTION # 20

Is it possible to restrict permissions so that a controller can only change the image of a deployment (without changing anything else about it, e.g., environment variables, commands, replicas, secrets)?

- A. Yes, with a 'managed fields' annotation.
- B. No, because granting access to the spec.containers.image field always grants access to the rest of the spec object.
- C. Yes, by granting permission to the /image subresource.
- D. **Not with RBAC, but it is possible with an admission webhook.**

Answer: D

Explanation:

* RBAC in Kubernetes is coarse-grained: it controls verbs (get, update, patch, delete) on resources (e.g., deployments), but not individual fields within a resource.

- * There is no /image subresource for deployments (there is one for pods but only for ephemeral containers).
- * Therefore, RBAC cannot restrict changes only to the image field.
- * Admission Webhooks (mutating/validating) can enforce fine-grained policies (e.g., deny updates that change anything other than spec.containers[*].image).
- * Exact extract (Kubernetes Docs - Admission Webhooks):
 * "Admission webhooks can be used to enforce custom policies on objects being admitted." References:
 Kubernetes Docs - RBAC: <https://kubernetes.io/docs/reference/access-authn-authz/rbac/> Kubernetes Docs - Admission Webhooks: <https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/>

NEW QUESTION # 21

What was the name of the precursor to Pod Security Standards?

- A. Kubernetes Security Context
- B. Pod Security Policy
- C. Container Security Standards
- D. Container Runtime Security

Answer: B

Explanation:

- * Kubernetes originally had a feature called PodSecurityPolicy (PSP), which provided controls to restrict pod behavior.
- * Official docs:
 * "PodSecurityPolicy was deprecated in Kubernetes v1.21 and removed in v1.25."
 * "Pod Security Standards (PSS) replace PodSecurityPolicy (PSP) with a simpler, policy- driven approach."
 * PSP was often complex and hard to manage, so it was replaced by Pod Security Admission (PSA) which enforces Pod Security Standards.

References:

Kubernetes Docs - PodSecurityPolicy (deprecated): <https://kubernetes.io/docs/concepts/security/pod-security-policy/> Kubernetes Blog - PodSecurityPolicy Deprecation: <https://kubernetes.io/blog/2021/04/06/podsecuritypolicy-deprecation-past-present-and-future/>

NEW QUESTION # 22

In a Kubernetes cluster, what are the security risks associated with using ConfigMaps for storing secrets?

- A. Using ConfigMaps for storing secrets might make applications incompatible with the Kubernetes cluster.
- B. Storing secrets in ConfigMaps does not allow for fine-grained access control via RBAC.
- C. Storing secrets in ConfigMaps can expose sensitive information as they are stored in plaintext and can be accessed by unauthorized users.
- D. ConfigMaps store sensitive information in etcd encoded in base64 format automatically, which does not ensure confidentiality of data.

Answer: C

Explanation:

- * ConfigMaps are explicitly not for confidential data.
- * Exact extract (ConfigMap concept): "A ConfigMap is an API object used to store non- confidential data in key-value pairs."
- * Exact extract (ConfigMap concept): "ConfigMaps are not intended to hold confidential data. Use a Secret for confidential data."
- * Why this is risky: data placed into a ConfigMap is stored as regular (plaintext) string values in the API and etcd (unless you deliberately use binaryData for base64 content you supply). That means if someone has read access to the namespace or to etcd/APIServer storage, they can view the values.
- * Secrets vs ConfigMaps (to clarify distractor D):
 * Exact extract (Secret concept): "By default, secret data is stored as unencrypted base64- encoded strings. You can enable encryption at rest to protect Secrets stored in etcd."
- * This base64 behavior applies to Secrets, not to ConfigMap data. Thus option D is incorrect for ConfigMaps.
- * About RBAC (to clarify distractor A): Kubernetes does not support fine-grained RBAC for both ConfigMaps and Secrets; the issue isn't lack of RBAC but that ConfigMaps are not designed for confidential material.
- * About compatibility (to clarify distractor C): Using ConfigMaps for secrets doesn't make apps "incompatible"; it's simply insecure and against guidance.

References:

Kubernetes Docs -ConfigMaps: <https://kubernetes.io/docs/concepts/configuration/configmap/> Kubernetes Docs -Secrets: <https://kubernetes.io/docs/concepts/configuration/secret/> Kubernetes Docs -Encrypting Secret Data at Rest: <https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/>

Note: The citations above are from the official Kubernetes documentation and reflect the stated guidance that ConfigMaps are for non-confidential data, while Secrets (with encryption at rest enabled) are for confidential data, and that the 4C's map to defense in depth.

NEW QUESTION # 23

A cluster administrator wants to enforce the use of a different container runtime depending on the application a workload belongs to.

- A. By manually modifying the container runtime for each workload after it has been created.
- B. By modifying the kube-apiserver configuration file to specify the desired container runtime for each application.
- **C. By configuring an mutating admission controller webhook that intercepts new workload creation requests and modifies the container runtime based on the application label.**
- D. By configuring validating admission controller webhook that verifies the container runtime based on the application label and rejects requests that do not comply.

Answer: C

Explanation:

- * Kubernetes supports workload-specific runtimes via `RuntimeClass`.
- * An mutating admission controller can enforce this automatically by:
- * Intercepting workload creation requests.
- * Modifying the Pod spec to set `runtimeClassName` based on labels or policies.
- * Incorrect options:
 - * (A) Manual modification is not scalable or secure.
 - * (B) kube-apiserver cannot enforce per-application runtime policies.
 - * (C) A validating webhook can only reject, not modify, the runtime.

References:

Kubernetes Documentation - `RuntimeClass`

CNCF Security Whitepaper - Admission controllers for enforcing runtime policies.

NEW QUESTION # 24

.....

To help candidates overcome this challenge, Dumpcollection offers authentic, accurate, and genuine Linux Foundation KCSA PDF Dumps. When preparing for the Linux Foundation Kubernetes and Cloud Native Security Associate (KCSA) certification exam, candidates need not worry about their preparation notes or the format of the KCSA Exam because Dumpcollection offers updated Linux Foundation Kubernetes and Cloud Native Security Associate (KCSA) practice test material.

KCSA Download Pdf: https://www.dumpcollection.com/KCSA_braindumps.html

- Free PDF KCSA - Fantastic Test Linux Foundation Kubernetes and Cloud Native Security Associate Passing Score □ Enter ➡ www.validtorrent.com □ and search for ➡ KCSA □ to download for free □ New KCSA Braindumps Sheet
- KCSA Valid Test Vce Free □ New KCSA Braindumps Files □ KCSA Reliable Exam Registration □ Immediately open 「 www.pdfvce.com 」 and search for { KCSA } to obtain a free download □ KCSA Valid Test Vce Free
- Latest Linux Foundation Kubernetes and Cloud Native Security Associate vce dumps - KCSA prep4sure exam □ The page for free download of ➡ KCSA □ □ □ on 【 www.dumpsquestion.com 】 will open immediately □ New KCSA Test Forum
- Are Linux Foundation KCSA Actual Questions Effective to Get Certified? □ Easily obtain ➡ KCSA ⇔ for free download through □ www.pdfvce.com □ □ KCSA Dump Check
- Valid KCSA Exam Pattern □ KCSA Latest Practice Materials □ Study Materials KCSA Review □ Copy URL ▶ www.prep4sures.top ▲ open and search for ✓ KCSA □ ✓ □ to download for free * KCSA Dump Check
- Latest Linux Foundation Kubernetes and Cloud Native Security Associate vce dumps - KCSA prep4sure exam □ The page for free download of 「 KCSA 」 on ➤ www.pdfvce.com □ will open immediately □ Valid Exam KCSA Braindumps
- Latest Linux Foundation Kubernetes and Cloud Native Security Associate vce dumps - KCSA prep4sure exam □ Easily

obtain KCSA for free download through “www.practicevce.com” Passing KCSA Score