

Achieve an Excellent Score in Your CWNP CWNA-109 Exam with ITCertMagic

What's more, part of that ITCertMagic CWNA-109 dumps now are free: <https://drive.google.com/open?id=1VTU-bCX2g1lMQB14KQP0F06npyQUHKbJ>

our advanced operation system on the CWNA-109 learning guide will automatically encrypt all of the personal information on our CWNA-109 practice dumps of our buyers immediately, and after purchasing, it only takes 5 to 10 minutes before our operation system sending our CWNA-109 Study Materials to your email address, there is nothing that you need to worry about, and we will spear no effort to protect your interests from any danger and ensure you the fastest delivery.

In the past ten years, we always hold the belief that it is dangerous if we feel satisfied with our CWNA-109 study engine and stop renovating. Luckily, we still memorize our initial determination. We are proud that our CWNA-109 learning questions are so popular in the market. Please remember that all experiences will become your valuable asset in life. And it is never too late to learn more and something new. Just buy our CWNA-109 Exam Braindumps, you will find that you can reach your dream easily.

>> CWNA-109 Latest Test Practice <<

Exam CWNA-109 Dump, CWNA-109 Certification Exam

Our CWNA-109 study prep has inspired millions of exam candidates to pursue their dreams and motivated them to learn more high-efficiently. Many customers get manifest improvement. CWNA-109 simulating exam will inspire your potential. And you will be more successful with the help of our CWNA-109 training guide. Just imagine that when you have the certification, you will have a lot of opportunities to come to the bigger companies and get a higher salary.

CWNP Wireless Network Administrator (CWNA) Sample Questions (Q88-Q93):

NEW QUESTION # 88

You are performing a post-implementation validation survey. What basic tool can be used to easily locate areas of high co-channel interference?

- A. Wi-Fi scanner
- B. Access point spectrum analyzer
- C. Laptop-based spectrum analyzer
- D. Throughput tester

Answer: A

Explanation:

A Wi-Fi scanner is a basic tool that can be used to easily locate areas of high co-channel interference. A Wi-Fi scanner is a software application that can run on a laptop, tablet, smartphone, or other device that has a Wi-Fi adapter. A Wi-Fi scanner can scan the wireless environment and display information about the detected access points and client stations, such as their SSID, BSSID, channel, signal strength, security, and data rate. A Wi-Fi scanner can also show the channel utilization and overlap of different access points, which can indicate the level of co-channel interference. Co-channel interference is a type of interference that occurs when multiple access points use the same or adjacent channels within the same coverage area. Co-channel interference can reduce the throughput and performance of the WLAN, as the access points and client stations have to contend for the channel access and avoid collisions. To identify areas of high co-channel interference, a Wi-Fi scanner can be used to measure the signal strength and channel utilization of different access points and compare them with a threshold or a baseline. Alternatively, a Wi-Fi scanner can also use a color-coded heat map to visualize the co-channel interference level in different locations. References: 1, Chapter 7, page 279; 2, Section 4.3

NEW QUESTION # 89

You are using a tool that allows you to see signal strength for all Aps in the area with a visual representation. It shows you SSIDs available and the security settings for each SSID. It allows you to filter by frequency band to see only 2.4 GHz networks or only 5 GHz networks. No additional features are available.

What kind of application is described?

- A. Protocol analyzer
- B. Site survey utility
- C. Spectrum analyzer
- D. WLAN scanner tool

Answer: D

Explanation:

The tool described is a WLAN (Wireless Local Area Network) scanner tool. WLAN scanner tools are designed to provide information about the wireless networks in a given area, including:

* Signal Strength: They show the signal strength of all access points (APs) in the vicinity, which is crucial for understanding the coverage area and potential interference.

* SSID Visualization: These tools display the SSIDs (Service Set Identifiers) of available networks, allowing users to identify different wireless networks easily.

* Security Settings Information: WLAN scanner tools often show the type of security implemented on each network, such as WPA2, WEP, etc.

* Frequency Band Filtering: They allow users to filter and view networks based on the frequency band (2.4 GHz or 5 GHz), which is useful for analyzing network distribution and planning.

While protocol analyzers, site survey utilities, and spectrum analyzers are also used in wireless networking, their functions are distinct from what is described:

* Protocol Analyzers are more sophisticated and are used to capture and analyze network traffic.

* Site Survey Utilities are used to map signal coverage and plan network layouts, often with more advanced features for detailed site surveys.

* Spectrum Analyzers provide a detailed view of the frequency spectrum and non-Wi-Fi interference but don't typically focus on SSIDs or security settings.

Thus, the correct answer is D, a WLAN scanner tool, based on the functionalities described.

References:

* CWNA Certified Wireless Network Administrator Official Study Guide: Exam PW0-105, by David D. Coleman and David A. Westcott.

* Tools and techniques for wireless network analysis and troubleshooting.

NEW QUESTION # 90

What best describes WPA2 in relation to 802.11 wireless networks?

- A. WPA2 is specified in the 802.11 standard as implementing CCMP/AES.
- B. WPA2 is the second version of WPA and it enhances security through the use of TKIP instead of WEP.
- C. WPA2 is the standard that defines security for WLANs.
- D. **WPA2 is a certification created by the Wi-Fi Alliance that validates devices correctly implement CCMP/ AES.**

Answer: D

Explanation:

WPA2 (Wi-Fi Protected Access 2) is a security certification program developed by the Wi-Fi Alliance to secure wireless computer networks. It is important to understand the following:

* **WPA2 and the 802.11 Standard:** While WPA2 is based on elements of the 802.11i amendment to the 802.11 standard, it is not itself a standard but rather a certification to ensure devices comply with certain security criteria, including the correct implementation of CCMP (Counter Mode Cipher Block Chaining Message Authentication Code Protocol) and AES (Advanced Encryption Standard).

* **CCMP/AES Implementation:** WPA2 enhances the security of wireless networks by using CCMP for encryption, which is based on AES, a robust encryption algorithm. This represents a significant security improvement over WEP (Wired Equivalent Privacy) and WPA (Wi-Fi Protected Access) that used TKIP (Temporal Key Integrity Protocol).

* **WPA vs. WPA2:** WPA was the interim security enhancement over WEP, utilizing TKIP for encryption. WPA2, however, moved to the more secure AES-based encryption method. Contrary to option C, WPA2 does not enhance security by using TKIP; it uses CCMP/AES.

Therefore, option B correctly describes WPA2 as a certification program ensuring devices properly implement the more secure CCMP/AES encryption methods.

References:

Wi-Fi Alliance website for WPA2 certification details.

IEEE 802.11i-2004: Amendment for Enhanced Security.

NEW QUESTION # 91

You are troubleshooting a client issue on a Windows laptop. The laptop can see and connect to 2.4 GHz APs, but does not even see 5 GHz APs. While evaluating the issue, you determine that this problem is happening for all of the laptops of this model in the organization. Several other tablets connect on channel 48 and channel

52 in the same work areas. What is the likely problem?

- A. The access points are configured to disallow 5 GHz.
- B. The clients are configured to use WPA and 5 GHz channels only support WPA2.
- C. The antennas in the laptop have insufficient gain to detect the 5 GHz signals.
- D. **The client drivers are faulty and should be upgraded.**

Answer: D

Explanation:

The client drivers are faulty and should be upgraded is the likely problem for the laptop that can see and connect to 2.4 GHz APs, but does not even see 5 GHz APs. The client drivers are the software components that enable the wireless adapter of the laptop to communicate with the operating system and the network. The client drivers are responsible for scanning the available wireless channels, detecting and connecting to the access points, negotiating the security and data rate parameters, and transmitting and receiving data frames. If the client drivers are faulty, outdated, or incompatible, they may cause various issues with the wireless performance and functionality, such as low data rates, poor signal strength, frequent disconnections, or inability to see or connect to certain access points or channels.

One of the possible causes of faulty client drivers is that they do not support or recognize some of the features or standards of the 802.11ac technology, such as wider channel bandwidths, higher modulation schemes, or DFS (Dynamic Frequency Selection) channels. This could explain why the laptop can see and connect to 2.4 GHz APs, but not 5 GHz APs, as 802.11ac operates only in the 5 GHz band and uses channels that are wider (up to 160 MHz) and higher (up to channel 165) than those used by previous standards. Moreover, some of the

5 GHz channels are subject to DFS rules, which require the access points and client stations to monitor and avoid using channels that are occupied by radar systems or other primary users. If the client drivers do not support or comply with DFS rules, they may not be able to see or connect to access points that use DFS channels.

To solve this problem, the client drivers should be upgraded to the latest version that supports and is compatible with 802.11ac features and standards. This can be done by downloading and installing the updated driver software from the manufacturer's website or using a device manager tool. Upgrading the client drivers may also improve other aspects of wireless performance and functionality, such as data rates, signal strength, security, and stability. References: 1, Chapter 12, page 493; 2, Section 8.1

NEW QUESTION # 92

An 802.11 WLAN transmitter that emits a 50 mW signal is connected to a cable with 3 dB of loss. The cable is connected to an antenna with 16 dBi of gain. What is the power level at the Intentional Radiator?

- A. 250 mW
- B. 1000 mW
- C. 25 mW
- D. 500 mW

Answer: A

Explanation:

The power level at the Intentional Radiator (IR) is 250 mW. The IR is the point where the RF signal leaves the transmitter and enters the antenna system. To calculate the power level at the IR, we need to consider the output power level of the transmitter, the loss of the cable, and the gain of the antenna. The formula is:

Power level at IR (dBm) = Output power level (dBm) - Cable loss (dB) + Antenna gain (dBi) We can convert the output power level of 50 mW to dBm by using the formula:

Power level (dBm) = $10 * \log_{10}(\text{Power level (mW)})$

Therefore, 50 mW = $10 * \log_{10}(50) = 16.99 \text{ dBm}$

We can plug in the values into the formula:

Power level at IR (dBm) = $16.99 - 3 + 16 = 29.99 \text{ dBm}$

We can convert the power level at IR from dBm to mW by using the inverse formula:

Power level (mW) = $10^{(dBm/10)}$

P.S. Free & New CWNA-109 dumps are available on Google Drive shared by ITCertMagic: <https://drive.google.com/open?id=1VTU-bCX2g1lMQB14KQP0F06npyQUHKbj>