

Free PDF 2026 Amazon Trustable SAP-C02: AWS Certified Solutions Architect - Professional (SAP-C02) Testking Learning Materials

P.S. Free & New SAP-C02 dumps are available on Google Drive shared by Test4Cram: https://drive.google.com/open?id=1mOT6-6hchFNHFKaTj_y9bmJqkmj-PM4K

We have been always trying to make every effort to consolidate and keep a close relationship with customer by improving the quality of our SAP-C02 practice materials. So our SAP-C02 learning guide is written to convey not only high quality of them, but in a friendly, helpfully, courteously to the points to secure more complete understanding for you. And the content of our SAP-C02 study questions is easy to understand.

Our SAP-C02 guide materials are constantly updated. In order to ensure that you can use the latest version as quickly as possible, our professional experts check the SAP-C02 exam questions every day for updates. If there is an update system, it will be automatically sent to you. The SAP-C02 learning prep you use is definitely the latest information on the market without doubt. And you can enjoy free updates for one year after purchase.

>> SAP-C02 Testking Learning Materials <<

SAP-C02 Study Material - PDF SAP-C02 VCE

We are specializing in the career to bring all our clients pleasant and awarded study experience and successfully obtain their desired certification file. With our SAP-C02 exam guide, your exam will become a piece of cake. We can proudly claim that you can be ready to pass your SAP-C02 Exam after studying with our SAP-C02 study materials for 20 to 30 hours. Since our professional experts simplify the content, you can easily understand and grasp the important and valid information.

The AWS Certified Solutions Architect - Professional (SAP-C02) certification exam is an advanced-level exam designed for experienced AWS Solutions Architects. AWS Certified Solutions Architect - Professional (SAP-C02) certification validates the candidate's ability to design and deploy scalable, highly available, and fault-tolerant systems on AWS. To be eligible for the exam, candidates must have already earned the AWS Certified Solutions Architect - Associate certification and have a minimum of two years of hands-on experience designing and deploying cloud architecture on AWS. The SAP-C02 Certification Exam covers a broad range of topics, including advanced networking, security, cost optimization, and application design, and candidates should have a solid understanding of these topics to be successful on the exam.

Amazon AWS Certified Solutions Architect - Professional (SAP-C02) Sample Questions (Q51-Q56):

NEW QUESTION # 51

A company is developing and hosting several projects in the AWS Cloud. The projects are developed across multiple AWS accounts under the same organization in AWS Organizations.

The company requires the cost for cloud infrastructure to be allocated to the owning project. The team responsible for all of the AWS accounts has discovered that several Amazon EC2 instances are lacking the Project tag used for cost allocation.

Which actions should a solutions architect take to resolve the problem and prevent it from happening in the future? (Choose three.)

- A. Use AWS Security Hub to aggregate a list of EC2 instances with the missing Project tag.
- B. Create an IAM policy in each account with a deny action for ec2:RunInstances if the Project tag is missing.
- C. Create an SCP in the organization with a deny action for ec2:RunInstances if the Project tag is missing.
- D. Use Amazon Inspector in the organization to find resources with missing tags.
- E. Create an AWS Config rule in each account to find resources with missing tags.
- F. Create an AWS Config aggregator for the organization to collect a list of EC2 instances with the missing Project tag.

Answer: C,E,F

Explanation:

<https://docs.aws.amazon.com/config/latest/developerguide/config-rule-multi-account-deployment.html>

<https://docs.aws.amazon.com/config/latest/developerguide/aggregate-data.html>

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_examp les_tagging.html

NEW QUESTION # 52

A company is migrating some of its applications to AWS. The company wants to migrate and modernize the applications quickly after it finalizes networking and security strategies. The company has set up an AWS Direct Connection connection in a central network account.

The company expects to have hundreds of AWS accounts and VPCs in the near future. The corporate network must be able to access the resources on AWS seamlessly and also must be able to communicate with all the VPCs. The company also wants to route its cloud resources to the internet through its on-premises data center.

Which combination of steps will meet these requirements? (Choose three.)

- A. Create a Direct Connect gateway in the central account. In each of the accounts, create an association proposal by using the Direct Connect gateway and the account ID for every virtual private gateway.
- B. Provision only private subnets. Open the necessary route on the transit gateway and customer gateway to allow outbound internet traffic from AWS to flow through NAT services that run in the data center.
- C. Share the transit gateway with other accounts. Attach VPCs to the transit gateway.
- D. Create a Direct Connect gateway and a transit gateway in the central network account. Attach the transit gateway to the Direct Connect gateway by using a transit VIF.
- E. Provision an internet gateway. Attach the internet gateway to subnets. Allow internet traffic through the gateway.
- F. Provision VPC peering as necessary.

Answer: B,C,D

Explanation:

Option A is incorrect because creating a Direct Connect gateway in the central account and creating an association proposal by using the Direct Connect gateway and the account ID for every virtual private gateway does not enable active-passive failover between the regions. A Direct Connect gateway is a globally available resource that enables you to connect your AWS Direct Connect connection over a private virtual interface (VIF) to one or more VPCs in any AWS Region. A virtual private gateway is the VPN concentrator on the Amazon side of a VPN connection. You can associate a Direct Connect gateway with either a transit gateway or a virtual private gateway. However, a Direct Connect gateway does not provide any load balancing or failover capabilities by itself. Option B is correct because creating a Direct Connect gateway and a transit gateway in the central network account and attaching the transit gateway to the Direct Connect gateway by using a transit VIF meets the requirement of enabling the corporate network to access the resources on AWS seamlessly and also to communicate with all the VPCs. A transit VIF is a type of private VIF that you can use to connect your AWS Direct Connect connection to a transit gateway or a Direct Connect gateway. A transit gateway is a network transit hub that you can use to interconnect your VPCs and on-premises networks. By using a transit VIF, you can route traffic between your on-premises network and multiple VPCs across different AWS accounts and Regions through a single connection.²³ Option C is incorrect because provisioning an internet gateway, attaching the internet gateway to subnets, and allowing internet traffic through the gateway does not meet the requirement of routing cloud resources to the internet

through its on-premises data center. An internet gateway is a horizontally scaled, redundant, and highly available VPC component that allows communication between your VPC and the internet. An internet gateway serves two purposes: to provide a target in your VPC route tables for internet-routable traffic, and to perform network address translation (NAT) for instances that have been assigned public IPv4 addresses. By using an internet gateway, you are routing cloud resources directly to the internet, not through your on-premises data center.

Option D is correct because sharing the transit gateway with other accounts and attaching VPCs to the transit gateway meets the requirement of enabling the corporate network to access the resources on AWS seamlessly and also to communicate with all the VPCs. You can share your transit gateway with other AWS accounts within the same organization by using AWS Resource Access Manager (AWS RAM). This allows you to centrally manage connectivity from multiple accounts without having to create individual peering connections between VPCs or duplicate network appliances in each account.

You can attach VPCs from different accounts and Regions to your shared transit gateway and enable routing between them.

Option E is incorrect because provisioning VPC peering as necessary does not meet the requirement of enabling the corporate network to access the resources on AWS seamlessly and also to communicate with all the VPCs. VPC peering is a networking connection between two VPCs that enables you to route traffic between them using private IPv4 addresses or IPv6 addresses. You can create a VPC peering connection between your own VPCs, or with a VPC in another AWS account within a single Region. However, VPC peering does not allow you to route traffic from your on-premises network to your VPCs or between multiple Regions. You would need to create multiple VPN connections or Direct Connect connections for each VPC peering connection, which increases operational complexity and costs.

Option F is correct because provisioning only private subnets, opening the necessary route on the transit gateway and customer gateway to allow outbound internet traffic from AWS to flow through NAT services that run in the data center meets the requirement of routing cloud resources to the internet through its on-premises data center. A private subnet is a subnet that's associated with a route table that has no route to an internet gateway. Instances in a private subnet can communicate with other instances in the same VPC but cannot access resources on the internet directly. To enable outbound internet access from instances in private subnets, you can use NAT devices such as NAT gateways or NAT instances that are deployed in public subnets. A public subnet is a subnet that's associated with a route table that has a route to an internet gateway. Alternatively, you can use your on-premises data center as a NAT device by configuring routes on your transit gateway and customer gateway that direct outbound internet traffic from your private subnets through your VPN connection or Direct Connect connection. This way, you can route cloud resources to the internet through your on-premises data center instead of using an internet gateway.

References: 1:

<https://docs.aws.amazon.com/directconnect/latest/UserGuide/direct-connect-gateways-intro.html> 2:
<https://docs.aws.amazon.com/directconnect/latest/UserGuide/direct-connect-transit-virtual-interfaces.html> 3:
<https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html> :
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html :
<https://docs.aws.amazon.com/vpc/latest/tgw/tgw-sharing.html> :
<https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html> :
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html :
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario3.html :
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_NAT_Instance.html :
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_NAT_Gateway.html

NEW QUESTION # 53

A news company wants to implement an AWS Lambda function that calls an external API to receive new press releases every 10 minutes. The API provider is planning to use an IP address allow list to protect the API, so the news company needs to provide any public IP addresses that access the API. The company's current architecture includes a VPC with an internet gateway and a NAT gateway. A solutions architect must implement a static IP address for the Lambda function.

Which combination of steps should the solutions architect take to meet these requirements?
(Choose two.)

- A. Create a transit gateway.
Attach the VPC and the Lambda function to the transit gateway.
- B. Use the Elastic IP address that is associated with the NAT gateway for the IP address allow list.
- C. Configure the Lambda function to launch in the private subnet of the VPC.
- D. Configure the Lambda function to launch in the public subnet of the VPC.
- E. Assign an Elastic IP address to the Lambda function.
Use the Lambda function's Elastic IP address for the IP address allow list.

Answer: B,C

Explanation:

AWS Lambda functions should not be configured to connect to public subnets. They should either be configured to use "No VPC"

(in which case they can directly access the Internet), or they should be connected to private subnets (and can use a NAT Gateway or NAT).

NEW QUESTION # 54

A company has application services that have been containerized and deployed on multiple Amazon EC2 instances with public IPs. An Apache Kafka cluster has been deployed to the EC2 instances. A PostgreSQL database has been migrated to Amazon RDS for PostgreSQL. The company expects a significant increase of orders on its platform when a new version of its flagship product is released.

What changes to the current architecture will reduce operational overhead and support the product release?

- A. Create an EC2 Auto Scaling group behind an Application Load Balancer. Create additional read replicas for the DB instance. Create Amazon Kinesis data streams and configure the application services to use the data streams. Store and serve static content directly from Amazon S3.
- B. Create an EC2 Auto Scaling group behind an Application Load Balancer. Deploy the DB instance in Multi-AZ mode and enable storage auto scaling. Create Amazon Kinesis data streams and configure the application services to use the data streams. Store and serve static content directly from Amazon S3.
- C. Deploy the application on Amazon Elastic Kubernetes Service (Amazon EKS) with AWS Fargate and enable auto scaling behind an Application Load Balancer. Create additional read replicas for the DB instance. Create an Amazon Managed Streaming for Apache Kafka cluster and configure the application services to use the cluster. Store static content in Amazon S3 behind an Amazon CloudFront distribution.
- D. Deploy the application on a Kubernetes cluster created on the EC2 instances behind an Application Load Balancer. Deploy the DB instance in Multi-AZ mode and enable storage auto scaling. Create an Amazon Managed Streaming for Apache Kafka cluster and configure the application services to use the cluster. Store static content in Amazon S3 behind an Amazon CloudFront distribution.

Answer: C

Explanation:

Explanation

The correct answer is D. Deploy the application on Amazon Elastic Kubernetes Service (Amazon EKS) with AWS Fargate and enable auto scaling behind an Application Load Balancer. Create additional read replicas for the DB instance. Create an Amazon Managed Streaming for Apache Kafka cluster and configure the application services to use the cluster. Store static content in Amazon S3 behind an Amazon CloudFront distribution.

Option D meets the requirements of the scenario because it allows you to reduce operational overhead and support the product release by using the following AWS services and features:

Amazon Elastic Kubernetes Service (Amazon EKS) is a fully managed service that allows you to run Kubernetes applications on AWS without needing to install, operate, or maintain your own Kubernetes control plane. You can use Amazon EKS to deploy your containerized application services on a Kubernetes cluster that is compatible with your existing tools and processes.

AWS Fargate is a serverless compute engine that eliminates the need to provision and manage servers for your containers. You can use AWS Fargate as the launch type for your Amazon EKS pods, which are the smallest deployable units of computing in Kubernetes. You can also enable auto scaling for your pods, which allows you to automatically adjust the number of pods based on the demand or custom metrics.

An Application Load Balancer (ALB) is a load balancer that distributes traffic across multiple targets in multiple Availability Zones using HTTP or HTTPS protocols. You can use an ALB to balance the load across your Amazon EKS pods and provide high availability and fault tolerance for your application.

Amazon RDS for PostgreSQL is a fully managed relational database service that supports the PostgreSQL open source database engine. You can create additional read replicas for your DB instance, which are copies of your primary DB instance that can handle read-only queries and improve performance. You can also use read replicas to scale out beyond the capacity of a single DB instance for read-heavy workloads.

Amazon Managed Streaming for Apache Kafka (Amazon MSK) is a fully managed service that makes it easy to build and run applications that use Apache Kafka to process streaming data. Apache Kafka is an open source platform for building real-time data pipelines and streaming applications. You can use Amazon MSK to create and manage a Kafka cluster that is highly available, secure, and compatible with your existing Kafka applications. You can also configure your application services to use the Amazon MSK cluster as a source or destination of streaming data.

Amazon S3 is an object storage service that offers high durability, availability, and scalability. You can store static content such as images, videos, or documents in Amazon S3 buckets, which are containers for objects. You can also serve static content directly from Amazon S3 using public URLs or presigned URLs.

Amazon CloudFront is a fast content delivery network (CDN) service that securely delivers data, videos, applications, and APIs to customers globally with low latency and high transfer speeds. You can use Amazon CloudFront to create a distribution that caches static content from your Amazon S3 bucket at edge locations closer to your users. This can improve the performance and user

experience of your application.

Option A is incorrect because creating an EC2 Auto Scaling group behind an ALB would not reduce operational overhead as much as using AWS Fargate with Amazon EKS, as you would still need to manage EC2 instances for your containers. Creating additional read replicas for the DB instance would not provide high availability or fault tolerance in case of a failure of the primary DB instance, unlike deploying the DB instance in Multi-AZ mode. Creating Amazon Kinesis data streams would not be compatible with your existing Apache Kafka applications, unlike using Amazon MSK.

Option B is incorrect because creating an EC2 Auto Scaling group behind an ALB would not reduce operational overhead as much as using AWS Fargate with Amazon EKS, as you would still need to manage EC2 instances for your containers. Creating Amazon Kinesis data streams would not be compatible with your existing Apache Kafka applications, unlike using Amazon MSK. Storing and serving static content directly from Amazon S3 would not provide optimal performance and user experience, unlike using Amazon CloudFront.

Option C is incorrect because deploying the application on a Kubernetes cluster created on the EC2 instances behind an ALB would not reduce operational overhead as much as using AWS Fargate with Amazon EKS, as you would still need to manage EC2 instances and Kubernetes control plane for your containers. Using Amazon API Gateway to interact with the application would add an unnecessary layer of complexity and cost to your architecture, as you would need to create and maintain an API gateway that proxies requests to your ALB.

NEW QUESTION # 55

A company is hosting a critical application on a single Amazon EC2 instance. The application uses an Amazon ElastiCache for Redis single-node cluster for an in-memory data store. The application uses an Amazon RDS for MariaDB DB instance for a relational database. For the application to function, each piece of the infrastructure must be healthy and must be in an active state.

A solutions architect needs to improve the application's architecture so that the infrastructure can automatically recover from failure with the least possible downtime.

Which combination of steps will meet these requirements? (Select THREE.)

- A. Create a replication group for the ElastiCache for Redis cluster. Enable Multi-AZ on the cluster.
- B. Use an Elastic Load Balancer to distribute traffic across multiple EC2 instances. Ensure that the EC2 instances are part of an Auto Scaling group that has a minimum capacity of two instances.
- C. Modify the DB instance to create a Multi-AZ deployment that extends across two Availability Zones.
- D. Create a replication group for the ElastiCache for Redis cluster. Configure the cluster to use an Auto Scaling group that has a minimum capacity of two instances.
- E. Modify the DB instance to create a read replica in the same Availability Zone. Promote the read replica to be the primary DB instance in failure scenarios.
- F. Use an Elastic Load Balancer to distribute traffic across multiple EC2 instances. Ensure that the EC2 instances are configured in unlimited mode.

Answer: B,C,D

Explanation:

Explanation

Using an Elastic Load Balancer (ELB) to distribute traffic across multiple EC2 instances and ensuring that the EC2 instances are part of an Auto Scaling group with a minimum capacity of two instances will improve the availability and scalability of the application. The ELB will automatically route traffic to healthy instances, and the Auto Scaling group will automatically scale the number of instances based on demand. In the event of a failure, the Auto Scaling group will automatically replace the failed instance, minimizing downtime.

As mentioned in the previous answer, A Multi-AZ deployment for Amazon RDS for MariaDB DB instances provides enhanced availability and failover support for DB instances. In a Multi-AZ deployment, Amazon RDS automatically provisions and maintains a synchronous "standby" replica in a different availability zone (AZ) than the primary DB instance. In the event of planned or unplanned outages, Amazon RDS performs an automatic failover to the standby, minimizing downtime.

Creating a replication group for the ElastiCache for Redis cluster and configuring the cluster to use an Auto Scaling group that has a minimum capacity of two instances will improve the availability and scalability of the ElastiCache service. The replication group will provide failover support for the Redis cluster and the Auto Scaling group will automatically increase capacity in the event of a failure, minimizing downtime.

Reference:

<https://aws.amazon.com/elasticloadbalancing/>

<https://aws.amazon.com/autoscaling/>

<https://aws.amazon.com/rds/multi-az/>

<https://aws.amazon.com/elasticache/redis/>

<https://aws.amazon.com/elasticache/features/redis-features/>

NEW QUESTION # 56

Amazon offers a free demo version for you to verify the authenticity of the Amazon SAP-C02 exam prep material before buying it. 365 days free upgrades are provided by Amazon SAP-C02 exam dumps you purchased change. We guarantee to our valued customers that Amazon SAP-C02 Exam Dumps will save you time and money, and you will pass your Amazon SAP-C02 exam.

SAP-C02 Study Material: https://www.test4cram.com/SAP-C02_real-exam-dumps.html

BTW, DOWNLOAD part of Test4Cram SAP-C02 dumps from Cloud Storage: https://drive.google.com/open?id=1mOT6-6chcFNHFKaTj_y9bmJqknj-PM4K