

100%合格率のData-Engineer-Associate資格準備 &合格 スムーズData-Engineer-Associate日本語版 |高品質な Data-Engineer-Associate試験

2026年MogiExamの最新Data-Engineer-Associate PDFダンプおよびData-Engineer-Associate試験エンジンの無料共有: <https://drive.google.com/open?id=1yETMTKvgJE48pyFgskC0duF15zmwngze>

Data-Engineer-Associate試験はあなたのキャリアのマイルストーンで、競争が激しいこの時代で、これまで以上に重要になりました。あなたは一回で気楽にData-Engineer-Associate試験に合格することを保証します。将来で新しいチャンスを作り、仕事が楽しげにやらせます。MogiExamの値段よりそれが創造する価値ははるかに大きいです。我々は弊社の商品とあなたの努力を通してあなたはData-Engineer-Associate試験に合格することができると信じています。

誰でも給料が高いのを希望します。でも、給料が高いかどうかはあなたの価値次第です。Data-Engineer-Associate認証試験に合格したら、自分の価値を高めることができます。我々MogiExamの問題集は全面的に質の高いですから、受験生としてのあなたに一番ふさわしいです。我々の資料を利用したら、あなたはData-Engineer-Associate試験に合格することができます。

>> Data-Engineer-Associate資格準備 <<

Data-Engineer-Associate日本語版、Data-Engineer-Associate試験

持ってきた製品があなたにふさわしくないと感じることはよくありますか？ Data-Engineer-Associate学習ガイドを使用することに決めた場合、問題に遭遇することは決してないことを伝えたいと思います。私たちのData-Engineer-Associate学習教材は、あなたが期待できない高品質を持っています。 Data-Engineer-Associate学習教材のガイドanceで経験を積むと、以前よりも短時間で過ごすことができ、明らかに進歩を感じることができます。また、Data-Engineer-Associateのテストクイズは、進歩に役立つことがあります。

Amazon AWS Certified Data Engineer - Associate (DEA-C01) 認定 Data-

Engineer-Associate 試験問題 (Q114-Q119):

質問 # 114

A data engineer needs to join data from multiple sources to perform a one-time analysis job. The data is stored in Amazon DynamoDB, Amazon RDS, Amazon Redshift, and Amazon S3.

Which solution will meet this requirement MOST cost-effectively?

- A. Copy the data from DynamoDB, Amazon RDS, and Amazon Redshift into Amazon S3. Run Amazon Athena queries directly on the S3 files.
- B. Use Amazon Athena Federated Query to join the data from all data sources.
- C. Use Redshift Spectrum to query data from DynamoDB, Amazon RDS, and Amazon S3 directly from Redshift.
- D. Use an Amazon EMR provisioned cluster to read from all sources. Use Apache Spark to join the data and perform the analysis.

正解: B

解説:

Amazon Athena Federated Query is a feature that allows you to query data from multiple sources using standard SQL. You can use Athena Federated Query to join data from Amazon DynamoDB, Amazon RDS, Amazon Redshift, and Amazon S3, as well as other data sources such as MongoDB, Apache HBase, and Apache Kafka1. Athena Federated Query is a serverless and interactive service, meaning you do not need to provision or manage any infrastructure, and you only pay for the amount of data scanned by your queries.

Athena Federated Query is the most cost-effective solution for performing a one-time analysis job on data from multiple sources, as it eliminates the need to copy or move data, and allows you to query data directly from the source.

The other options are not as cost-effective as Athena Federated Query, as they involve additional steps or costs. Option A requires you to provision and pay for an Amazon EMR cluster, which can be expensive and time-consuming for a one-time job. Option B requires you to copy or move data from DynamoDB, RDS, and Redshift to S3, which can incur additional costs for data transfer and storage, and also introduce latency and complexity. Option D requires you to have an existing Redshift cluster, which can be costly and may not be necessary for a one-time job. Option D also does not support querying data from RDS directly, so you would need to use Redshift Federated Query to access RDS data, which adds another layer of complexity2. References:

[Amazon Athena Federated Query](#)

[Redshift Spectrum vs Federated Query](#)

質問 # 115

A company wants to analyze sales records that the company stores in a MySQL database. The company wants to correlate the records with sales opportunities identified by Salesforce.

The company receives 2 GB of sales records every day. The company has 100 GB of identified sales opportunities. A data engineer needs to develop a process that will analyze and correlate sales records and sales opportunities. The process must run once each night.

Which solution will meet these requirements with the LEAST operational overhead?

- A. Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to fetch both datasets. Use AWS Lambda functions to correlate the datasets. Use AWS Step Functions to orchestrate the process.
- B. Use Amazon AppFlow to fetch sales opportunities from Salesforce. Use AWS Glue to fetch sales records from the MySQL database. Correlate the sales records with the sales opportunities. Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to orchestrate the process.
- C. Use Amazon AppFlow to fetch sales opportunities from Salesforce. Use AWS Glue to fetch sales records from the MySQL database. Correlate the sales records with sales opportunities. Use AWS Step Functions to orchestrate the process.
- D. Use Amazon AppFlow to fetch sales opportunities from Salesforce. Use Amazon Kinesis Data Streams to fetch sales records from the MySQL database. Use Amazon Managed Service for Apache Flink to correlate the datasets. Use AWS Step Functions to orchestrate the process.

正解: C

解説:

* Problem Analysis:

* The company processes 2 GB of daily sales records and 100 GB of Salesforce sales opportunities.

* The goal is to analyze and correlate the two datasets with low operational overhead.

* The process must run once nightly.

* Key Considerations:

- * Amazon AppFlow simplifies data integration with Salesforce.
- * AWS Glue can extract data from MySQL and perform ETL operations.
- * Step Functions can orchestrate workflows with minimal manual intervention.
- * Apache Airflow and Flink add complexity, which conflicts with the requirement for low operational overhead.
- * Solution Analysis:
 - * Option A: MWAA + Lambda + Step Functions
 - * Requires custom Lambda code for dataset correlation, increasing development and operational complexity.
 - * Option B: AppFlow + Glue + MWAA
 - * MWAA adds orchestration overhead compared to the simpler Step Functions.
 - * Option C: AppFlow + Glue + Step Functions
 - * AppFlow fetches Salesforce data, Glue extracts MySQL data, and Step Functions orchestrate the entire process.
 - * Minimal setup and operational overhead, making it the best choice.
 - * Option D: AppFlow + Kinesis + Flink + Step Functions
 - * Using Kinesis and Flink for batch processing introduces unnecessary complexity.
- * Final Recommendation:
 - * Use Amazon AppFlow to fetch Salesforce data, AWS Glue to process MySQL data, and Step Functions for orchestration.

:

Amazon AppFlow Overview
 AWS Glue ETL Documentation
 AWS Step Functions

質問 # 116

A company extracts approximately 1 TB of data every day from data sources such as SAP HANA, Microsoft SQL Server, MongoDB, Apache Kafka, and Amazon DynamoDB. Some of the data sources have undefined data schemas or data schemas that change.

A data engineer must implement a solution that can detect the schema for these data sources. The solution must extract, transform, and load the data to an Amazon S3 bucket. The company has a service level agreement (SLA) to load the data into the S3 bucket within 15 minutes of data creation.

Which solution will meet these requirements with the LEAST operational overhead?

- A. Use Amazon EMR to detect the schema and to extract, transform, and load the data into the S3 bucket.
 Create a pipeline in Apache Spark.
- B. Create a PySpark program in AWS Lambda to extract, transform, and load the data into the S3 bucket.
- C. Use AWS Glue to detect the schema and to extract, transform, and load the data into the S3 bucket.
 Create a pipeline in Apache Spark.
- D. Create a stored procedure in Amazon Redshift to detect the schema and to extract, transform, and load the data into a Redshift Spectrum table. Access the table from Amazon S3.

正解: C

解説:

AWS Glue is a fully managed service that provides a serverless data integration platform. It can automatically discover and categorize data from various sources, including SAP HANA, Microsoft SQL Server, MongoDB, Apache Kafka, and Amazon DynamoDB. It can also infer the schema of the data and store it in the AWS Glue Data Catalog, which is a central metadata repository. AWS Glue can then use the schema information to generate and run Apache Spark code to extract, transform, and load the data into an Amazon S3 bucket. AWS Glue can also monitor and optimize the performance and cost of the data pipeline, and handle any schema changes that may occur in the source data. AWS Glue can meet the SLA of loading the data into the S3 bucket within 15 minutes of data creation, as it can trigger the data pipeline based on events, schedules, or on-demand. AWS Glue has the least operational overhead among the options, as it does not require provisioning, configuring, or managing any servers or clusters. It also handles scaling, patching, and security automatically. References:

AWS Glue

[AWS Glue Data Catalog]

[AWS Glue Developer Guide]

AWS Certified Data Engineer - Associate DEA-C01 Complete Study Guide

質問 # 117

A company has three subsidiaries. Each subsidiary uses a different data warehousing solution. The first subsidiary hosts its data warehouse in Amazon Redshift. The second subsidiary uses Teradata Vantage on AWS. The third subsidiary uses Google

BigQuery.

The company wants to aggregate all the data into a central Amazon S3 data lake. The company wants to use Apache Iceberg as the table format.

A data engineer needs to build a new pipeline to connect to all the data sources, run transformations by using each source engine, join the data, and write the data to Iceberg.

Which solution will meet these requirements with the LEAST operational effort?

- A. Use native Amazon Redshift, Teradata, and BigQuery connectors to build the pipeline in AWS Glue. Use native AWS Glue transforms to join the data. Run a Merge operation on the data lake Iceberg table.
- B. Use the Amazon Athena federated query connectors for Amazon Redshift, Teradata, and BigQuery to build the pipeline in Athena. Write a SQL query to read from all the data sources, join the data, and run a Merge operation on the data lake Iceberg table.
- C. Use the native Amazon Redshift connector, the Java Database Connectivity (JDBC) connector for Teradata, and the open source Apache Spark BigQuery connector to build the pipeline in Amazon EMR. Write code in PySpark to join the data. Run a Merge operation on the data lake Iceberg table.
- D. Use the native Amazon Redshift, Teradata, and BigQuery connectors in Amazon Appflow to write data to Amazon S3 and AWS Glue Data Catalog. Use Amazon Athena to join the data. Run a Merge operation on the data lake Iceberg table.

正解： B

解説：

Amazon Athena provides federated query connectors that allow querying multiple data sources, such as Amazon Redshift, Teradata, and Google BigQuery, without needing to extract the data from the original source. This solution is optimal because it offers the least operational effort by avoiding complex data movement and transformation processes.

* Amazon Athena Federated Queries:

* Athena's federated queries allow direct querying of data stored across multiple sources, including Amazon Redshift, Teradata, and BigQuery. With Athena's support for Apache Iceberg, the company can easily run a Merge operation on the Iceberg table.

* The solution reduces complexity by centralizing the query execution and transformation process in Athena using SQL queries.

質問 # 118

A data engineer needs Amazon Athena queries to finish faster. The data engineer notices that all the files the Athena queries use are currently stored in uncompressed .csv format. The data engineer also notices that users perform most queries by selecting a specific column.

Which solution will MOST speed up the Athena query performance?

- A. Compress the .csv files by using gzip compression.
- B. Compress the .csv files by using Snappy compression.
- C. Change the data format from .csv to Apache Parquet. Apply Snappy compression.
- D. Change the data format from .csv to JSON format. Apply Snappy compression.

正解： C

解説：

Amazon Athena is a serverless interactive query service that allows you to analyze data in Amazon S3 using standard SQL. Athena supports various data formats, such as CSV, JSON, ORC, Avro, and Parquet. However, not all data formats are equally efficient for querying. Some data formats, such as CSV and JSON, are row-oriented, meaning that they store data as a sequence of records, each with the same fields. Row-oriented formats are suitable for loading and exporting data, but they are not optimal for analytical queries that often access only a subset of columns. Row-oriented formats also do not support compression or encoding techniques that can reduce the data size and improve the query performance.

On the other hand, some data formats, such as ORC and Parquet, are column-oriented, meaning that they store data as a collection of columns, each with a specific data type. Column-oriented formats are ideal for analytical queries that often filter, aggregate, or join data by columns. Column-oriented formats also support compression and encoding techniques that can reduce the data size and improve the query performance. For example, Parquet supports dictionary encoding, which replaces repeated values with numeric codes, and run-length encoding, which replaces consecutive identical values with a single value and a count. Parquet also supports various compression algorithms, such as Snappy, GZIP, and ZSTD, that can further reduce the data size and improve the query performance.

Therefore, changing the data format from CSV to Parquet and applying Snappy compression will most speed up the Athena query performance. Parquet is a column-oriented format that allows Athena to scan only the relevant columns and skip the rest, reducing the amount of data read from S3. Snappy is a compression algorithm that reduces the data size without compromising the query speed, as it is splittable and does not require decompression before reading. This solution will also reduce the cost of Athena

queries, as Athena charges based on the amount of data scanned from S3.

The other options are not as effective as changing the data format to Parquet and applying Snappy compression. Changing the data format from CSV to JSON and applying Snappy compression will not improve the query performance significantly, as JSON is also a row-oriented format that does not support columnar access or encoding techniques. Compressing the CSV files by using Snappy compression will reduce the data size, but it will not improve the query performance significantly, as CSV is still a row-oriented format that does not support columnar access or encoding techniques. Compressing the CSV files by using gzip compression will reduce the data size, but it will degrade the query performance, as gzip is not a splittable compression algorithm and requires decompression before reading. References:

Amazon Athena

Choosing the Right Data Format

AWS Certified Data Engineer - Associate DEA-C01 Complete Study Guide, Chapter 5: Data Analysis and Visualization, Section 5.1: Amazon Athena

質問 # 119

.....

Data-Engineer-Associateテストトレントは好評で、すべての献身で99%の合格率に達しました。多くの労働者がより高い自己改善を進めるための強力なツールとして、当社のData-Engineer-Associate認定トレーニングは、高度なパフォーマンスと人間中心のテクノロジーに対する情熱を追求し続けました。Data-Engineer-Associate勉強のトレントを完全に理解するには、Webにアクセスするか、Data-Engineer-Associate試験の質問のデモを無料でダウンロードして、Data-Engineer-Associateトレーニングの質を試すためにWebMogiExamで提供します。ガイド。

Data-Engineer-Associate日本語版: <https://www.mogixam.com/Data-Engineer-Associate-exam.html>

多くの製品はまだ芽生えているレベルですが、我々のData-Engineer-Associate AWS Certified Data Engineer - Associate (DEA-C01)勉強ガイドは長年の発展の後に好評を得ています、Amazon Data-Engineer-Associate資格準備 包括的なものではないかもしれません、資格試験に合格することは雇用主を雇うための非常に簡単な方法です、Data-Engineer-Associate試験問題を気に入っていますことを願っています、顧客の信頼を確立するために、購入前にダウンロードできる関連するData-Engineer-Associate日本語版 - AWS Certified Data Engineer - Associate (DEA-C01)無料デモを提供しています、MogiExam Data-Engineer-Associate日本語版はこの問題を着々解決できますよ、今教えてあげますよ。

やめてくれよ、ばっかじゃねえの、英国とカナダでは、女性と高齢者が自営業の発展をリードしています、多くの製品はまだ芽生えているレベルですが、我々のData-Engineer-Associate AWS Certified Data Engineer - Associate (DEA-C01)勉強ガイドは長年の発展の後に好評を得ています。

試験の準備方法-100%合格率のData-Engineer-Associate資格準備試験-実用的なData-Engineer-Associate日本語版

包括的なものではないかもしれません、資格試験に合格することは雇用主を雇うための非常に簡単な方法です、Data-Engineer-Associate試験問題を気に入っていますことを願っています、顧客の信頼を確立するために、購入前にダウンロードできるAWS Certified Data Engineer - Associate (DEA-C01)無料デモを提供しています。

MogiExamはこの問題を着々解決できますよ。

- Data-Engineer-Associate試験内容 □ Data-Engineer-Associate試験関連赤本 □ Data-Engineer-Associate試験対策書 □ 検索するだけで✓ www.xhs1991.com □✓ □から { Data-Engineer-Associate } を無料でダウンロードData-Engineer-Associate模試エンジン
- Data-Engineer-Associate模擬試験最新版 □ Data-Engineer-Associate資格認証攻略 □ Data-Engineer-Associate資格問題対応 □ 今すぐ { www.goshiken.com } で【 Data-Engineer-Associate 】を検索し、無料でダウンロードしてくださいData-Engineer-Associate資格問題対応
- Data-Engineer-Associate模擬試験最新版 □ Data-Engineer-Associate受験料過去問 □ Data-Engineer-Associate試験対策書 □ (Data-Engineer-Associate) の試験問題は「 www.passtest.jp 」で無料配信中Data-Engineer-Associate資格問題対応
- 素晴らしいData-Engineer-Associate資格準備と更新するData-Engineer-Associate日本語版 □ □ www.goshiken.com □から □ Data-Engineer-Associate □を検索して、試験資料を無料でダウンロードしてくださいData-Engineer-Associate試験関連赤本
- 素敵なData-Engineer-Associate資格準備試験-試験の準備方法-信頼的なData-Engineer-Associate日本語版 □ ➡ Data-Engineer-Associate □の試験問題は ➡ www.shikenpass.com □で無料配信中Data-Engineer-Associate模擬試

驗最新版

P.S. MogiExamがGoogle Driveで共有している無料かつ新しいData-Engineer-Associateダンプ：<https://drive.google.com/open?id=1yETMTKvgJE48pyFgskC0duF15znwngze>